TiO-coated 2D photonic crystals for reflectometric determination of malachite green.

Mikrochim Acta

Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.

Published: November 2019

A "detect and destroy" strategy is reported for the spectroscopic determination and photocatalytic degradation of Malachite Green (MG) in aqueous solutions. The intensity of the reflection peak maxima from the TiO-coated 2D-photonic crystal (PhC) at 633 nm wavelength undergoes a gradual decrease with increasing concentrations of MG. The determination of MG was readily achieved in the nanomolar range due to the quenching of the reflection intensity of the peak, measured using a fiber optic probe. The assay works in the 1.0 nM to 10 μM MG concentration range with a detection limit of 1.3 nM. The same TiO-coated 2D-PhC surface can photocatalytically degrade MG in aqueous solutions under UV irradiation. The photocatalytic degradation in the presence of TiO-coated 2D-PhC becomes evident as the blue color of MG changes to colorless with increasing irradiation time. The decrease in absorption is detected at 617 nm. It was found that the photocatalytic efficiency of TiO was synergistically enhanced in the presence of 2D-PhCs. It is concluded that each component of the TiO-coated 2D-PhC system plays a key role in the detection and degradation of MG. Graphical abstractSchematic representation for reflectometric detection and photocatalytic degradation of hazardous Malachite Green dye using TiO-coated two-dimensional photonic crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-019-3976-6DOI Listing

Publication Analysis

Top Keywords

malachite green
12
photocatalytic degradation
12
photonic crystals
8
aqueous solutions
8
tio-coated 2d-phc
8
tio-coated
5
tio-coated photonic
4
crystals reflectometric
4
reflectometric determination
4
determination malachite
4

Similar Publications

Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy.

View Article and Find Full Text PDF

Malachite Green (MG) is an antibiotic with antifungal activity, which is illegal to use in agriculture due to its mutagenic and teratogenic properties. Several scientific papers have been published on MG in fish. Therefore, an attempt was made to determine the meta-analysis concentration of MG in fish based on countries and types of fish subgroups, as well as the health risks of consumers, using the Monte Carlo simulation (MCS) model.

View Article and Find Full Text PDF

Removal of Malachite Green Dye from Aqueous Solution by a Novel Activated Carbon Prepared from Baobab Seeds Using Chemical Activation Method.

Molecules

January 2025

Department of Environment and Agricultural Natural Resources, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.

Two activated carbons were synthesized from baobab seeds (BSs) using two activators, sulfuric acid (BS-AAC) and sodium hydroxide (BS-BAC), for dye removal from aqueous solutions. Malachite green (MG) was used as a model dye. SEM, FTIR, TGA, and surface area were used to characterize the feedstock and synthesis activated carbons.

View Article and Find Full Text PDF

Capybaras (Hydrochoerus hydrochaeris) are hosts for several parasites of public health importance, including Cryptosporidium spp. Therefore, this study aimed to perform the molecular characterization of Cryptosporidium spp. in fecal samples from capybaras inhabiting urban areas.

View Article and Find Full Text PDF

Although various biochars from different biomass materials have been developed to remediate dye-contaminated environments, the removal capabilities of pristine biochar for dyes urgently require further enhancement due to insufficient surface adsorption sites. To introduce more adsorption sites, this work proposes a simple approach to fabricate coconut shell biochar (CSB) based adsorbent by anchoring zeolitic imidazolate framework-8 (ZIF-8) via the active sites provided by polydopamine (PDA)-coated CSB. The nucleation sites provided by the PDA layer promote the dispersion of ZIF-8 on the surface of CSB, resulting in sufficient adsorption sites for removing malachite green (MG) and rhodamine B (RB) from wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!