differentiation capacity of human breastmilk stem cells: A systematic review.

World J Stem Cells

Cell Therapy and Biotechnology in Regenerative Medicine Department, Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research and Pequeno Príncipe Faculty, Curitiba 80.240-020, Paraná, Brazil.

Published: November 2019

Background: Mesenchymal stem cells are pluripotent cells that have the ability to generate cells from a cell line or in other cell types from different tissues but from the same origin. Although those cells have more limited differentiation capacity than embryonic stem cells, they are easily obtained from somatic tissue and can be grown in large quantities. This characteristic of undifferentiated stem cells differentiating into different cell lines arouses strategies in regenerative medicine for the treatment of different diseases such as neurodegenerative diseases.

Aim: To evaluate the cell differentiation capacity of human breastmilk stem cells for the three germ layers by a systematic review.

Methods: The searched databases were PubMed, EMBASE, OVID, and COCHRANE LIBRARY, published between 2007 and 2018 in the English language. All were studies for analysis of the "cell differentiation potential" in the literature using the keywords "human breastmilk," "stem cells," and keywords combined with the Boolean operator "NOT" were used to exclude those articles that had the word "CANCER" and their respective synonyms, which were previously consulted according to medical subject heading terms. PRISMA 2009 guidelines were followed in this study.

Results: A total of 315 titles and abstracts of articles were examined. From these, 21 were in common with more than one database, leaving 294 articles for analysis. Of that total, five publications met the inclusion criteria. When analyzing the publications, it was demonstrated that human breastmilk stem cells have a high cellular plasticity, exhibiting the ability to generate cells of all three germ layers, endoderm, mesoderm, and ectoderm, demonstrating their stemness. Those cells expressed the genes, TRA-1-60/81, octamer-binding transcription factor 4, and NANOG, of which NANOG, a critical regulator for self-renewal and maintenance, was the most highly expressed. Those cells have the ability to differentiate into adipocytes, chondrocytes, osteocytes, oligodendrocytes, astrocytes, and neurons as well hepatocytes, β-pancreatic cells, and cardiomyocytes.

Conclusion: Although the literature has been scarce, the pluripotentiality of these cells represents great potential for tissue engineering and cellular therapy. Further studies for safe clinical translation are needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851011PMC
http://dx.doi.org/10.4252/wjsc.v11.i11.1005DOI Listing

Publication Analysis

Top Keywords

stem cells
24
cells
14
differentiation capacity
12
human breastmilk
12
breastmilk stem
12
capacity human
8
cells ability
8
ability generate
8
generate cells
8
cells three
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!