Background: Clear cell renal cell carcinoma (ccRCC) is the most common renal cell carcinoma subtype with a poor prognosis. LncRNA-LET is a long non-coding RNA (lncRNA) that is down-regulated in ccRCC tissues. However, its role in ccRCC development and progress is unclear.
Methods: LncRNA-LET expression was detected in ccRCC tissues and ccRCC cells using quantitative real-time PCR. The overexpression and knockdown experiments were performed in ccRCC cells and xenograft mouse model to evaluate role of lncRNA-LET. Cell cycle, apoptosis and JC-1 assays were conducted via flow cytometer. The protein levels were measured through western blot analysis and the interaction between lncRNA-LET and miR-373-3p was identified via luciferase reporter assay.
Results: LncRNA-LET expression was lower in ccRCC tissues than that in the matched adjacent non-tumor tissues (n = 16). In vitro, lncRNA-LET overexpression induced cell cycle arrest, promoted apoptosis and impaired mitochondrial membrane potential, whereas its knockdown exerted opposite effects. Moreover, we noted that lncRNA-LET may act as a target for oncomiR miR-373-3p. In contrast to lncRNA-LET, miR-373-3p expression was higher in ccRCC tissues. The binding between lncRNA-LET and miR-373-3p was validated. Two downstream targets of miR-373-3p, Dickkopf-1 (DKK1) and tissue inhibitor of metalloproteinase-2 (TIMP2), were positively regulated by lncRNA-LET in ccRCC cells. MiR-373-3p mimics reduced lncRNA-LET-induced up-regulation of DKK1 and TIMP2 levels, and attenuated lncRNA-LET-mediated anti-tumor effects in ccRCC cells. In vivo, lncRNA-LET suppressed the growth of ccRCC xenograft tumors.
Conclusion: These findings indicate that lncRNA-LET plays a tumor suppressive role in ccRCC by regulating miR-373-3p.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873579 | PMC |
http://dx.doi.org/10.1186/s12935-019-1008-6 | DOI Listing |
Front Immunol
January 2025
Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Introduction: The role of mast cells (MCs) in clear cell renal carcinoma (ccRCC) is unclear, and comprehensive single-cell studies of ccRCC MCs have not yet been performed.
Methods: To investigate the heterogeneity and effects of MCs in ccRCC, we studied single-cell transcriptomes from four ccRCC patients, integrating both single-cell sequencing and bulk tissue sequencing data from online sequencing databases, followed by validation via spatial transcriptomics and multiplex immunohistochemistry (mIHC).
Results: We identified four MC signature genes (TPSB2, TPSAB1, CPA3, and HPGDS).
FASEB J
January 2025
Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China.
Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system, and clear cell renal cell carcinoma (ccRCC) is the most common subtype. MYBL2 has been reported to be overexpressed in various tumors and associated with poor prognosis in patients, but its biological role in ccRCC remains unclear. In this study, we investigated the mRNA and protein expression levels of MYBL2 in ccRCC samples and evaluated the prognostic value of MYBL2 using TCGA dataset.
View Article and Find Full Text PDFOncogene
January 2025
Early Cancer Institute, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK.
Clear cell renal cell carcinoma (ccRCC) is characterised by significant genetic heterogeneity, which has diagnostic and prognostic implications. Very limited evidence is available regarding DNA methylation heterogeneity. We therefore generate sequence level DNA methylation data on 136 multi-region tumour and normal kidney tissue from 18 ccRCC patients, along with matched whole exome sequencing (85 samples) and gene expression (47 samples) data on a subset of samples.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).
View Article and Find Full Text PDFBMC Urol
January 2025
Institute of Clinical Medicine, The Second affiliated Hospital of Hainan Medical University, 368th Yehai Avenue, Haikou, Hainan, 570311, China.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common malignant urological tumor, and regrettably, and is insensitive to chemotherapy and radiotherapy, resulting in poor patient outcomes. DBF4 plays a critical role in DNA replication and participates in various biological functions, making it an attractive target for cancer treatment. However, its significance in ccRCC has not yet been explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!