Cemented Paste Backfill Geomechanics at a Narrow-Vein Underhand Cut-and-Fill Mine.

Rock Mech Rock Eng

Hecla Mining Company, 6500 N. Mineral Dr., Suite 200, Coeur d'Alene, ID 83815, USA.

Published: December 2019

Underhand cut-and-fill mining has allowed for the safe extraction of ore in many mines operating in weak rock or highly stressed, rockburst-prone ground conditions. However, the design of safe backfill undercuts is typically based on historical experience at mine operations and on the strength requirements derived from analytical beam equations. In situ measurements in backfill are not commonplace, largely due to challenges associated with instrumenting harsh mining environments. In deep, narrow-vein mines, large deformations and induced stresses fracture the cemented fill, often damaging the instruments and preventing long-term measurements. Hecla Mining Company and the Spokane Mining Research Division of the National Institute for Occupational Safety and Health (NIOSH) have worked collaboratively for several years to better quantify the geomechanics of cemented paste backfill (CPB), thereby improving safety in underhand stopes. A significant focus of this work has been an extensive in situ backfill instrumentation program to monitor long-term stope closure and induced backfill stress. Rugged and durable custom-designed closure meters were developed, allowing measurements to be taken for up to five successive undercuts and measuring closures of more than 50 cm and horizontal fill pressures up to 5.5 MPa. These large stope closures require the stress-strain response of the fill to be considered in design, rather than to rely solely on traditional methods of backfill span design based on intact fill strength. Furthermore, long-term instrument response shows a change in behavior after 13-14% strain, indicating a transition from shear yielding of the intact, cemented material to compaction of the porosity between sand grains, typical of uncemented sand fills. This strain-hardening behavior is important for mine design purposes, particularly for the use of numerical models to simulate regional rock support and stress redistribution. These quantitative measurements help justify long-standing assumptions regarding the role of backfill in ground support and will be useful for other mines operating under similar conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876314PMC
http://dx.doi.org/10.1007/s00603-019-01850-4DOI Listing

Publication Analysis

Top Keywords

cemented paste
8
backfill
8
paste backfill
8
underhand cut-and-fill
8
mines operating
8
cemented
4
backfill geomechanics
4
geomechanics narrow-vein
4
narrow-vein underhand
4
cut-and-fill mine
4

Similar Publications

Efficacy of different endodontic irrigants in the lesion sterilization and tissue repair technique in primary molars: A randomized controlled clinical trial.

J Indian Soc Pedod Prev Dent

October 2024

Department of Pediatric and Preventive Dentistry, Subharti Dental College and Hospital, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.

Background And Aim: This study aims to evaluate the efficacy of different endodontic irrigants employed in the lesion sterilization and tissue repair (LSTR) technique.

Methods: Forty children aged 4-8 years having at least one primary molar with irreversible pulpitis/pulpal necrosis indicated for pulpectomy were included. Participants were randomly divided into three test groups (Group A, B, and C) and one control group (Group D).

View Article and Find Full Text PDF

Hydraulic structures are frequently subjected to soft-water or acidic environments, necessitating serious consideration of the long-term effects of calcium leaching on the durability of concrete structures. Three types of common Portland cement (ordinary Portland cement, moderate-heat cement, and low-heat cement) paste samples widely applied to hydraulic concrete were immersed in a 6 mol/L NHCl solution to simulate accelerated calcium leaching behavior. The mass loss, porosity, leaching depth, compressive strength, and Ca/Si ratio of the three types of pastes were measured at different immersion stages (0, 14, 28, 56, 91, 140, and 180 days).

View Article and Find Full Text PDF

Study on Refined Crushing Technology of RAP and Mechanical Properties of RAP-Doped Cement-Stabilised Macadam Base.

Materials (Basel)

January 2025

Gansu Industry Technology Center of Transportation Construction Materials Research and Application, Lanzhou Jiaotong University, Lanzhou 730070, China.

In order to study the effect of the crushing process on the fine separation of reclaimed asphalt pavement (RAP) and the mechanical properties of cement-stabilised aggregate mixed with RAP, four crushing processes, namely small mesh hammer crushing, hammer crushing, jaw crushing, and double roller crushing, were used to separate the aggregate from asphalt in RAP materials. The effect of crushing on the grading characteristics and agglomeration condition of RAP material was investigated. RAP cement-stabilised aggregates were prepared and analysed for their mechanical properties and micro-morphology using RAP materials obtained from fine separation.

View Article and Find Full Text PDF

Gasification slag is the solid waste produced in the process of coal gasification. China produces approximately 30 million tons of gasification slag every year, which urgently needs to be recycled in an efficient and sustainable way. This paper discusses the feasibility of using gasification slag as a supplementary cementitious material (SCM).

View Article and Find Full Text PDF

Objective: To conduct a systematic review on the masking ability of subtractively and additively manufactured dental ceramics.

Materials And Methods: The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The electronic search was carried out through MEDLINE, Scopus, and Website of Science databases with a date restriction being from 2001 onwards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!