Increased temperature in the epilimnion and hypoxia in the metalimnion of a lake would result in an increase of positive-size-selective fish predation on zooplankton and in turn in a decrease of mean body size in zooplankton populations and communities. We tested this hypothesis in four types of experiments with juvenile rudd () foraging on in an indoor twin column tank system. In each experiment of the first three types, one column contained one of three types of experimental treatments differing from the control treatment (in the other column) by the following: (i) elevated temperature in the epilimnion, (ii) hypoxia in the metalimnion and (iii) simultaneous elevated temperature in the epilimnion and hypoxia in the metalimnion. In the fourth type of experiment, the gradients of temperature and oxygen concentration in both columns were the same, but prior to the experiments, and fish in the control treatment were acclimated to normoxia and, in the experimental treatment, to hypoxia. The results confirmed our hypothesis, since the predation rate of fish was greater in each of the first three experimental treatments than in the control. We did not detect an effect of the acclimation to hypoxia on the predation rate of the fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862932PMC
http://dx.doi.org/10.1093/plankt/fbz048DOI Listing

Publication Analysis

Top Keywords

predation rate
12
temperature epilimnion
12
epilimnion hypoxia
12
hypoxia metalimnion
12
hypoxia predation
8
three types
8
experimental treatments
8
control treatment
8
elevated temperature
8
rate fish
8

Similar Publications

Background: For severe systemic rheumatic diseases (SRDs), therapeutic plasma exchange (TPE) may be applied as a rescue therapy; it usually combined with intravenous immunoglobulin (IVIG) or intravenous methylprednisolone pulse (IVMP) in severe SRDs. However, the necessity of this combination treatment strategy in SRDs remains uncertain.

Objective: This retrospective study aimed to evaluate the effectiveness of TPE alone versus TPE combined with IVIG/IVMP in treating severe SRDs.

View Article and Find Full Text PDF

Differential recruitment drives pathogen-mediated competition between species in an amphibian chytridiomycosis system.

Ecol Appl

January 2025

Centre for Planetary Health and Food Security, and School of Environment and Science, Griffith University, Southport, Queensland, Australia.

Pathogens that infect multiple host species have an increased capacity to cause extinctions through parasite-mediated apparent competition. Given unprecedented and continuing losses of biodiversity due to Batrachochytrium dendrobatidis (Bd), the causative fungus of the amphibian skin disease chytridiomycosis, a robust understanding of the mechanisms driving cross-species infection dynamics is essential. Here, we used stage-structured, susceptible-infected compartmental models to explore drivers of Bd-mediated apparent competition between two sympatric amphibians, the critically endangered Litoria spenceri and the non-threatened Litoria lesueurii.

View Article and Find Full Text PDF

Natural history of the hyperdominant tree, Pentaclethra macroloba (Willd.) Kuntze, in the Amazon River estuary.

Braz J Biol

January 2025

Instituto Nacional de Pesquisas da Amazônia - INPA, Programa de Pós-graduação em Ecologia - PPGEco, Manaus, AM, Brasil.

Pentaclethra macroloba is a hyperdominant species with multiple uses in the Amazon. This species tolerates varying flood amplitudes, however the effect of flood topographic gradient on its ecophysiology remains unclear. We want to know if individuals from the high (10 trees) and low (20 trees) várzea show distinct phenological patterns as a function of the flood gradient, as well as their colonization strategies and their seed predators.

View Article and Find Full Text PDF

Acrobatics at the insect scale: A durable, precise, and agile micro-aerial robot.

Sci Robot

January 2025

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Aerial insects are exceptionally agile and precise owing to their small size and fast neuromotor control. They perform impressive acrobatic maneuvers when evading predators, recovering from wind gust, or landing on moving objects. Flapping-wing propulsion is advantageous for flight agility because it can generate large changes in instantaneous forces and torques.

View Article and Find Full Text PDF

Non-native species have higher consumption rates than their native counterparts.

Biol Rev Camb Philos Soc

January 2025

Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Curitiba, 81531-980, Brazil.

Non-native species can be major drivers of ecosystem alteration, especially through changes in trophic interactions. Successful non-native species have been predicted to have greater resource use efficiency relative to trophically analogous native species (the Resource Consumption Hypothesis), but rigorous evidence remains equivocal. Here, we tested this proposition quantitatively in a global meta-analysis of comparative functional response studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!