Ultra-thin ion exchange film on the ceramic supporter for output power improvement of reverse electrodialysis.

Sci Rep

Advanced Mechanical Engineering, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, 24341, South Korea.

Published: November 2019

In this study, ultra-thin ion exchange film on the ceramic supporter (UTFCS) composed of thin polymer layer and nanoporous ceramic layer with low electrical resistance was developed. The electrical properties and permselectivity of UTFCSs were evaluated and the properties of UTFCSs were compared with other ion exchange membranes. Fabricated UTFCSs were applied to a reverse electrodialysis (RED) system to evaluate the output characteristics and compared with other ion exchange membranes. The power density of RED using UTFCS was 36.6 mW/m, which was 8% higher than that of a commercial anion exchange membrane. In addition, possibility as power source was experimentally verified by driving LEDs. The proposed UTFCS can be applied not only to RED but also to energy development such as fuel cells and microbial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877634PMC
http://dx.doi.org/10.1038/s41598-019-54002-7DOI Listing

Publication Analysis

Top Keywords

ion exchange
16
ultra-thin ion
8
exchange film
8
film ceramic
8
ceramic supporter
8
reverse electrodialysis
8
compared ion
8
exchange membranes
8
exchange
5
supporter output
4

Similar Publications

Understanding Ion Transport in Alkyl Dicarbonates: An Experimental and Computational Study.

ACS Phys Chem Au

January 2025

Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

In an effort to improve safety and cycling stability of liquid electrolytes, the use of dicarbonates has been explored. In this study, four dicarbonate structures with varying end groups and spacers are investigated. The effect of these structural differences on the physical and ion transport properties is elucidated, showing that the end group has a significant influence on ion transport.

View Article and Find Full Text PDF

Electrophysiological Characterization of Monoolein-Fatty Acid Bilayers.

Langmuir

January 2025

Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States.

Understanding the evolution of protocells, primitive compartments that distinguish self from nonself, is crucial for exploring the origin of life. Fatty acids and monoglycerides have been proposed as key components of protocell membranes due to their ability to self-assemble into bilayers and vesicles capable of nutrient exchange. In this study, we investigate the electrophysiological properties of planar bilayers composed of monoglyceride and fatty acid mixtures, using a droplet interface bilayer system.

View Article and Find Full Text PDF

Mitigating cadmium contamination in soil using Biochar, sulfur-modified Biochar, and other organic amendments.

Int J Phytoremediation

January 2025

College of Engineering, Agriculture Aviation Innovation Lab, South China Agriculture University, Guangzhou, China.

Biochar is a novel approach to remediating heavy metal-contaminated soil. Using various organic amendments like phyllosilicate-minerals (PSM), compost, biochar (BC) and sulfur-modified biochar (SMB), demonstrates superior adsorption capacity and stability compared to unmodified biochar (BC). The adsorption mechanisms of SMB are identified for its potential to increase soil-pH and reduce available cadmium (Cd).

View Article and Find Full Text PDF

The interaction between dissolved organic matter (DOM) and ferrihydrite (Fh) is a crucial process to control the environmental behavior of heavy metals (HMs) in soil environments, with DOM playing a particularly strong role in HMs fate. Since chemical properties of DOM vary based on different soil parent materials, the underlying impact of DOM-Fh associations on HMs binding remains unclear. This study systematically investigated the interactions between DOM from three soil parent materials (fluvial alluvium: FDOM, sand-shale: SDOM and granite: GDOM) and Fh, and meanwhile understand their effects on the environmental behavior of Cd and Pb under various environmental conditions.

View Article and Find Full Text PDF

With high microporosity, good dispersibility, excellent specific surface area and large content surface functional group, hydrochar demonstrates significant advantages and strong affinity towards pollutants in water. Modification method plays a significant role for anion adsorption by modified hydrochar, layered double hydroxide (LDH) modified hydrocarbons (Mg/Al-LDH@HC-HCl) have been synthesized through a one-step hydrothermal approach and activated with hydrochloric acid in this paper. The physical and chemical characteristics of the hydrochar, both before and after modification, are analyzed using BET, SEM-EDS, TEM, XRD, FTIR, and XPS to explore the phosphate adsorption mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!