Artificial athletic turf containing crumb rubber (CR) from shredded tires is a growing environmental and public health concern. However, the associated health risk is unknown due to the lack of toxicity data for higher vertebrates. We evaluated the toxic effects of CR in a developing amniote vertebrate embryo. CR water leachate was administered to fertilized chicken eggs via different exposure routes, i.e., coating by dropping CR leachate on the eggshell; dipping the eggs into CR leachate; microinjecting CR leachate into the air cell or yolk. After 3 or 7 d of incubation, embryonic morphology, organ development, physiology, and molecular pathways were measured. The results showed that CR leachate injected into the yolk caused mild to severe developmental malformations, reduced growth, and specifically impaired the development of the brain and cardiovascular system, which were associated with gene dysregulation in aryl hydrocarbon receptor, stress-response, and thyroid hormone pathways. The observed systematic effects were probably due to a complex mixture of toxic chemicals leaching from CR, such as metals (e.g., Zn, Cr, Pb) and amines (e.g., benzothiazole). This study points to a need to closely examine the potential regulation of the use of CR on playgrounds and artificial fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911194PMC
http://dx.doi.org/10.1073/pnas.1909886116DOI Listing

Publication Analysis

Top Keywords

amniote vertebrate
8
leachate
5
artificial turf
4
turf infill
4
infill associated
4
associated systematic
4
systematic toxicity
4
toxicity amniote
4
vertebrate artificial
4
artificial athletic
4

Similar Publications

Amniote skulls are diverse in shape and skeletal composition, which is the basis of much adaptive diversification within this clade. Major differences in skull shape are established early in development, at a critical developmental interval spanning the initial outgrowth and fusion of the facial processes. In birds, this is orchestrated by domains of Shh and Fgf8 expression, known as the frontonasal ectodermal zone (FEZ).

View Article and Find Full Text PDF

Stored elastic bending tension as a mediator of embryonic body folding.

Cell Rep

January 2025

Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel. Electronic address:

During development, amniote vertebrate embryos transform from a flat sheet into a three-dimensional cylindrical form through ventral folding of the lateral sides of the sheet (the lateral plate [LP]) and their fusion in the ventral midline. Using a chick embryo slice system, we find that the flat stage is actually a poised balance of opposing dorsal and ventral elastic bending tensions. An intact extracellular matrix (ECM) is required for generating tension, as localized digestion of ECM dissipates tension, while removal of endoderm or ectoderm layers has no significant effect.

View Article and Find Full Text PDF

The transition between aquatic and terrestrial habitats leads to extreme structural changes in sensorial systems. Olfactory receptors (OR) are involved in the detection of odorant molecules both in water and on land. Therefore, ORs are affected by evolutionary habitat transitions experienced by organisms.

View Article and Find Full Text PDF

Self-organized patterning of crocodile head scales by compressive folding.

Nature

January 2025

Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.

Amniote integumentary appendages constitute a diverse group of micro-organs, including feathers, hair and scales. These structures typically develop as genetically controlled units, the spatial patterning of which emerges from a self-organized chemical Turing system with integrated mechanical feedback. The seemingly purely mechanical patterning of polygonal crocodile head scales provides an exception to this paradigm.

View Article and Find Full Text PDF

The function(s) of consciousness: an evolutionary perspective.

Front Psychol

November 2024

Biology Department, University of Victoria, Victoria, BC, Canada.

The functions of consciousness, viewed from an evolutionary standpoint, can be categorized as being either general or particular. There are two general functions, meaning those that do not depend on the particulars of how consciousness influences behavior or how and why it first evolved: of (1) expanding the behavioral repertoire of the individual through the gradual accumulation of neurocircuitry innovations incorporating consciousness that would not exist without it, and (2) reducing the time scale over which preprogrammed behaviors can be altered, from evolutionary time, across generations, to real-time. But neither answers Velmans' question, of why consciousness is adaptive in a proximate sense, and hence why it would have evolved, which depends on identifying the particular function it first performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!