A moving medium drags light along with it as measured by Fizeau and explained by Einstein's theory of special relativity. Here we show that the same effect can be obtained in a situation where there is no physical motion of the medium. Modulations of both the permittivity and permeability, phased in space and time in the form of traveling waves, are the basis of our model. Space-time metamaterials are represented by effective bianisotropic parameters, which can in turn be mapped to a moving homogeneous medium. Hence these metamaterials mimic a relativistic effect without the need for any actual material motion. We discuss how both the permittivity and permeability need to be modulated to achieve these effects, and we present an equivalent transmission line model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911182 | PMC |
http://dx.doi.org/10.1073/pnas.1915027116 | DOI Listing |
Materials (Basel)
January 2025
Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
A review of natural materials that exhibit negative permittivity or permeability, including gaseous plasma, metals, superconductors, and ferromagnetic materials, is presented. It is shown that samples made of such materials can store large amount of the electric (magnetic) energy and create plasmonic resonators for certain values of permittivity, permeability, and dimensions. The electric and the magnetic plasmon resonances in spherical samples made of such materials are analyzed using rigorous electrodynamic methods, and the results of the analysis are compared to experimental data and to results obtained with other methods.
View Article and Find Full Text PDFHeliyon
January 2025
School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
Metal-organic framework (MOF) derived porous FeO/C powders were applied for absorption of microwaves in the frequency range of 1-18 GHz. The effects of the polyvinylpyrrolidone (PVP) additive on the synthesis of MIL101-(Fe) precursor were studied by various characterization methods. By adding PVP, the impure hematite phase (α-FeO) with magnetite phase (FeO) was disappeared and the particular morphology was transformed to the porous rod-like, leading to the increase of specific surface area from 150 to 282 m/g.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia.
Nanophotonics
March 2024
Towson University, 8000 York Rd., Towson, MD 21252, USA.
A theory of surface electromagnetic waves in gradient media exhibiting arbitrary surface gradients of dielectric permittivity and magnetic permeability has been developed. Novel low-loss propagating surface wave solutions have been found in the gradient media in which both dielectric permittivity and magnetic permeability are dominated by their imaginary parts. Several examples of gradient geometries in which the surface wave problem may be solved analytically have been found.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Physics, Hanoi National University of Education, 136 Xuanthuy Road, Caugiay District, Hanoi 100000, Vietnam.
In this study, we explore the self-assembly of various colloidal symmetric dumbbell (DB) isomers, including dipole Janus, cis-Janus, trans-Janus, apolar-inward and polar-inward perpendicular Janus, and alternating perpendicular Janus DBs. Using dissipative particle dynamics (DPD) simulations under conditions mimicking experimental setups, we investigate cluster formation driven by emulsion droplet evaporation. Our findings reveal a diverse set of cluster structures, which are in good agreement with experimental and simulation results reported in the literature while also predicting the formation of novel cluster configurations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!