Most cancer vaccines under development are associated with defined tumor antigens rather than with all antigens of whole tumor cells, limiting the anti-tumor immune responses that they elicit. This work proposes an immunomodulator (R848)-loaded nanoparticle system (R848@NPs) that can absorb near-infrared light (+NIR) to cause low-temperature hyperthermia that interacts synergistically with its loaded R848 to relieve the tumor-mediated immunosuppressive microenvironment, generating robust anti-tumor memory immunity. In vitro results reveal that the R848@NPs could be effectively internalized by dendritic cells, causing their maturation and the subsequent regulation of their anti-tumor immune responses. Post-treatment observations in mice in which tumors were heat-treated at high temperatures reveal that tumor growth was significantly inhibited initially but not in the longer term, while low-temperature hyperthermia or immunotherapy alone simply delayed tumor growth. In contrast, a combined therapy that involved low-temperature hyperthermia and immunotherapy using R848@NPs/+NIR induced a long-lasting immunologic memory and consequently inhibited tumor growth and prevented cancer recurrence and metastasis. These results suggest that the method that is proposed herein is promising for generating cancer vaccines in situ, by using the tumor itself as the antigen source and the introduced R848@NPs/+NIR to generate a long-term anti-tumor immunity, for personalized immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2019.119629DOI Listing

Publication Analysis

Top Keywords

low-temperature hyperthermia
16
hyperthermia immunotherapy
12
tumor growth
12
nanoparticle system
8
cancer vaccines
8
anti-tumor immune
8
immune responses
8
tumor
6
modulation tumor
4
tumor microenvironment
4

Similar Publications

Infectious bacteria pose an increasing threat to public health, and hospital-acquired bacterial infections remain a significant challenge for wound healing. In this study, we developed an advanced nanoplatform utilizing copper doped magnetic vortex nanoring coated with polydopamine (Cu-MVNp) based nanotherapeutics for bacterial infection tri-therapy. This multifunctional nanoplatform exhibits remarkable dual-stimulus thermogenic capabilities and Fenton-like peroxidase activity.

View Article and Find Full Text PDF

Given that perioperative normothermia represents a quality parameter in pediatric anesthesia, numerous studies have been conducted on temperature measurement, albeit with heterogeneous measurement intervals, ranging from 30 s to fifteen minutes. We aimed to determine the minimum time interval for reporting of intraoperative core body temperature across commonly used measurement intervals in children. Data were extracted from the records of 65 children who had participated in another clinical study and analyzed using a quasibinomial mixed linear model.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the leading public health concerns in the world. Therapeutic hypothermia is routinely used in severe TBI, and pathophysiological hyperthermia, frequently observed in TBI patients, has an unclear impact on drug transport in the injured brain due to a lack of study on its effects. We investigated the effect of post-traumatic therapeutic hypothermia at 33°C and pathophysiological hyperthermia at 39°C on brain transport and cell uptake of neuroprotectants after TBI.

View Article and Find Full Text PDF

Regional lymph node (LN) dissection is often used for the treatment of deep LNs in tumour surgery; however, the method is prone to incomplete LN dissection, trauma, complications, and other side effects. LN tracers make it easier to visualise and remove LNs. However, the current common LN tracers only have a single function or have radiation hazards related to their use.

View Article and Find Full Text PDF

High-Efficiency Gold Nanoaggregates for NIR LED-Driven Sustained Mild Photothermal Therapy Achieving Complete Tumor Eradication and Immune Enhancement.

Adv Mater

December 2024

Department of Chemistry, Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China.

For millennia, humans have harnessed thermal energy to treat cancer. However, delivering energy to tumor tissues in traditional hyperthermia remains a significant challenge. Nanotechnology has revolutionized this approach, enabling nanomaterials to target tumors precisely and act as internal heat sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!