Baseline mobile surveys of methane sources using vehicle-mounted instruments have been performed in the Fylde and Ryedale regions of Northern England over the 2016-19 period around proposed unconventional (shale) gas extraction sites. The aim was to identify and characterise methane sources ahead of hydraulically fractured shale gas extraction in the area around drilling sites. This allows a potential additional source of emissions to atmosphere to be readily distinguished from adjacent sources, should gas production take place. The surveys have used ethane:methane (C2:C1) ratios to separate combustion, thermogenic gas and biogenic sources. Sample collection of source plumes followed by high precision δC analysis of methane, to separate and isotopically characterise sources, adds additional biogenic source distinction between active and closed landfills, and ruminant eructations from manure. The surveys show that both drill sites and adjacent fixed monitoring sites have cow barns and gas network pipeline leaks as sources of methane within a 1 km range. These two sources are readily separated by isotopes (δC of -67 to -58‰ for barns, compared to -43 to -39‰ for gas leaks), and ethane:methane ratios (<0.001 for barns, compared to >0.05 for gas leaks). Under a well-mixed daytime atmospheric boundary layer these sources are generally detectable as above baseline elevations up to 100 m downwind for gas leaks and up to 500 m downwind for populated cow barns. It is considered that careful analysis of these proxies for unconventional production gas, if and when available, will allow any fugitive emissions from operations to be distinguished from surrounding sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134600DOI Listing

Publication Analysis

Top Keywords

shale gas
12
gas leaks
12
gas
10
sources
9
source emissions
8
methane sources
8
gas extraction
8
cow barns
8
methane
5
environmental baseline
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!