A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Range-extending coral reef fishes trade-off growth for maintenance of body condition in cooler waters. | LitMetric

Range-extending coral reef fishes trade-off growth for maintenance of body condition in cooler waters.

Sci Total Environ

Southern Seas Ecology Laboratories, School of Biological Sciences, and The Environment Institute, The University of Adelaide, Adelaide SA 5005, Australia. Electronic address:

Published: February 2020

As ocean waters warm due to climate change, tropical species are shifting their ranges poleward to remain within their preferred thermal niches. As a result, novel communities are emerging in which tropical species interact with local temperate species, competing for similar resources, such as food and habitat. To understand how range-extending coral reef fish species perform along their leading edges when invading temperate ecosystems, we studied proxies of their fitness, including somatic growth (length increase), feeding rates, and body condition, along a 730-km latitudinal gradient situated in one of the global warming hotspots. We also studied co-occurring temperate species to assess how their fitness is affected along their trailing edges under ocean warming. We predicted that tropical fishes would experience reduced performance as they enter novel communities with suboptimal environmental conditions. Our study shows that although tropical fish maintain their body condition (based on three proxies) and stomach fullness across all invaded temperate latitudes, they exhibit decreased in situ growth rates, activity levels, and feeding rates in their novel temperate environment, likely a result of lower metabolic rates in cooler waters. We posit that tropical fishes face a growth-maintenance trade-off under the initial phases of ocean warming (i.e. at their leading edges), allowing them to maintain their body condition in cooler temperate waters but at the cost of slower growth. Temperate fish exhibited no distinct patterns in body condition and performance along the natural temperature gradient studied. However, in the face of future climate change, when metabolism is no longer stymied by low water temperatures, tropical range-extending species are likely to approach their native-range growth rates along their leading edges, ultimately leading to increased competitive interactions with local species in temperate ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134598DOI Listing

Publication Analysis

Top Keywords

body condition
20
leading edges
12
range-extending coral
8
coral reef
8
condition cooler
8
cooler waters
8
climate change
8
tropical species
8
novel communities
8
temperate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!