Plant growth promoting rhizobacteria (PGPR) is an alternative to chemical fertilizers for sustainable, environment friendly agriculture. There is a need to develop strategies to potentiate the interaction between rhizobacteria and plants. Flavonoids and organic acids (components of root exudates) play specific beneficial roles as carbon sources and signal molecules in the plant - rhizobacteria interactions. The goal of this work is to encapsulate signal molecules, namely citric acid and naringin, an organic acid and a flavonoid, respectively, by a biodegradable polymer, polycaprolactone (PCL), in order to maintain the stability and activity of those signal molecules and enable their slow or controlled release over a selected period of time, according to the needs of the plants. This approach is expected to potentiate food crops, namely peanut crop, in adverse environmental conditions (water deficit), by promoting the beneficial interaction between the peanut plant (A. hypogaea) and rhizobacteria. The microcapsules (MCs) are obtained by an emulsion process combined with solvent evaporation technique and are characterized by scanning electron microscopy, thermogravimetry and Fourier transformed infrared spectroscopy. The kinetics of in vitro release of encapsulated molecules, in a period where the uptake of the compound in plants can occur, is studied. The encapsulation synthesis parameters that lead to the best encapsulation process yield and efficiency, as well as to the best final performance in terms of release, are identified. The effect of pH and molecular weight of PCL is found to mediate the release properties of the molecules for different types of soil. PCL 45000 Mw dissolved at 16% in dichloromethane leads to an encapsulation efficiency of 75% and the resulting MCs containing naringin exhibit a slow release profile for 30 days, unmodified by pH, enabling their use in soils of different characteristics. This research makes possible the manufacturing of smart materials for sustainable agriculture practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.135548 | DOI Listing |
Sci Rep
December 2024
Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
Despite the progress in conventional treatments for head and neck squamous cell carcinoma (HNSCC), the 5-year survival rate remains below 70%. Enhancing immunotherapy outcomes through personalized treatment strategies, particularly by identifying immune-related biomarkers, is critical. The ASXL family are associated with malignancies, but their relationship with HNSCC has not been elucidated.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
The cytokine homologs, particularly transforming growth factor (TGF)-β, is a crucial immunomodulatory molecule and involved in growth and developmental processes in several helminths. In this study, the basic properties and functions of T. spiralis TGF-β homolog 2 (TsTGH2) were characterized using bioinformatics and molecular biology approaches.
View Article and Find Full Text PDFSci Rep
December 2024
Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA.
The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
Interleukin-6 (IL-6) is a major pro-inflammatory cytokine that demonstrates a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!