Effects of water level and vegetation on nitrate dynamics at varying sediment depths in laboratory-scale wetland mesocosms.

Sci Total Environ

Groundwater Research Center, Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea; Department of Mineral and Groundwater Resources, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

Published: February 2020

Recent increases in the frequency of extreme floods and droughts associated with climate change can affect fluctuating groundwater or wetland water levels and wetland plant growth, and consequently cause redox condition changes in nitrogen dynamics in wetland sediments. Here, we studied the fate of nitrate (NO), dissolved organic carbon (DOC), and the microbial characteristics at different sediment depths in response to water levels (i.e., 5 or 2.5 cm) above the sediment surface and in the presence or absence of plants (Phragmites communis Trin) for four months in three wetland mesocosms. Results showed that mesocosm A (MA) with a high water level (5 cm above the surface) and plants had significantly higher DOC concentrations (17.57 ± 8.22 mg/L) in sediment that were actively consumed by microorganisms than other mesocosms with low water level (MB) and without plant (MC) (8.77 ± 2.38 mg/L and 7.87 ± 2.72 mg/L in MB and MC, respectively). Consequently, the most of influent NO (20 mg-N/L) dramatically reduced in the vicinity of plant roots (-20 to -15 cm sediment depth) where active denitrification was expected in MA. Moreover, the functional genes involved in denitrification such as narG (2.4 × 10 -3.5 × 10 copies·g) and nirS (5.6 × 10-1.1 × 10 copies·g) were more abundant in this mesocosm. The profile of the microbial community structure at the class level revealed that Alphaproteocbacteria (MA: 14.19 ± 1.19%; MB: 14.01 ± 0.51%; MC: 15.21 ± 2.76%) and Actinobacteria (MA: 8.21 ± 1.91%; MB: 13.91 ± 2.13%; MC: 11.75 ± 3.43%) were predominant in all three mesocosms. Interestingly, the clustered heatmap supported the obvious difference in microbial composition of MA from other mesocosms showing relatively more abundant Clostridia (6.71 ± 1.54%) and Deltaproteobacteria (7.05 ± 0.68%). These results can provide an insight to understand the biogeochemical nitrogen cycle associated with climate change in wetland systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134741DOI Listing

Publication Analysis

Top Keywords

water level
12
sediment depths
8
wetland mesocosms
8
associated climate
8
climate change
8
water levels
8
wetland
6
sediment
5
mesocosms
5
effects water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!