A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transformation of tetrachloroethylene in a flow-through electrochemical reactor. | LitMetric

Transformation of tetrachloroethylene in a flow-through electrochemical reactor.

Sci Total Environ

Department of Civil & Environmental Engineering, 501 Stearns, 360 Huntington Avenue, Boston, MA 02115, United States of America.

Published: March 2020

Electrochemical transformation of harmful tetrachloroethylene (PCE) is evaluated as a method for management of groundwater plumes to protect the drinking water resource, its consumers and the environment. In contrast to previous work that reported transformation of trichloroethylene, a byproduct of PCE, this work focuses on transformation of PCE in a saturated porous matrix and the influence of design parameters on the removal performance. Design parameters investigated were electrode configuration, catalyst load, electrode spacing, current intensity, orientation of reactor and flow through a porous matrix. A removal of 86% was reached in the fully liquid-filled, horizontally oriented reactor at a current of 120 mA across a cathode → bipolar electrode → anode arrangement with a Darcy velocity of 0.03 cm/min (150 m/yr). The palladium load on the cathode significantly influenced the removal. Enhanced removal was observed with increased electrode spacing. Presence of an inert porous matrix improved PCE removal by 9%-point compared to a completely liquid-filled reactor. Normalization of the data indicated, that a higher charge transfer per contaminant mass is required for removal of low PCE concentrations. No chlorinated intermediates were formed. The results suggest, that PCE can be electrochemically transformed in reactor designs replicating that of a potential field-implementation. Further work is required to better understand the reduction and oxidation processes established and the parameters influencing such. This knowledge is essential for optimization towards testing in complex conditions and variations of contaminated sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980996PMC
http://dx.doi.org/10.1016/j.scitotenv.2019.135566DOI Listing

Publication Analysis

Top Keywords

porous matrix
12
design parameters
8
electrode spacing
8
pce
6
removal
6
reactor
5
transformation
4
transformation tetrachloroethylene
4
tetrachloroethylene flow-through
4
flow-through electrochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!