Sliding Window Mapping for Omnidirectional RGB-D Sensors.

Sensors (Basel)

Graduate Program in Electrical and Computer Engineering (CPGEI), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba PR 80230-901, Brazil.

Published: November 2019

This paper presents an omnidirectional RGB-D (RGB + Distance fusion) sensor prototype using an actuated LIDAR (Light Detection and Ranging) and an RGB camera. Besides the sensor, a novel mapping strategy is developed considering sensor scanning characteristics. The sensor can gather RGB and 3D data from any direction by toppling in 90 degrees a laser scan sensor and rotating it about its central axis. The mapping strategy is based on two environment maps, a local map for instantaneous perception, and a global map for perception memory. The 2D local map represents the surface in front of the robot and may contain RGB data, allowing environment reconstruction and human detection, similar to a sliding window that moves with a robot and stores surface data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928814PMC
http://dx.doi.org/10.3390/s19235121DOI Listing

Publication Analysis

Top Keywords

sliding window
8
omnidirectional rgb-d
8
mapping strategy
8
rgb data
8
local map
8
sensor
5
window mapping
4
mapping omnidirectional
4
rgb-d sensors
4
sensors paper
4

Similar Publications

This study aimed to develop a real-time, noninvasive hyperkalemia monitoring system for dialysis patients with chronic kidney disease. Hyperkalemia, common in dialysis patients, can lead to life-threatening arrhythmias or sudden death if untreated. Therefore, real-time monitoring of hyperkalemia in this population is crucial.

View Article and Find Full Text PDF

Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro-scale level as measured by resting-state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags.

View Article and Find Full Text PDF

Background: Some studies have suggested that glaucoma may be associated with neurodegeneration and a higher risk of dementia.

Objective: To evaluate whether exposure to different categories of topical glaucoma medications is associated with differential dementia risks in people with glaucoma.

Methods: We used data from Adult Changes in Thought, a population-based, prospective cohort study that follows cognitively normal older adults from Kaiser Permanente Washington (KPWA) until Alzheimer's disease (AD) and related dementia development.

View Article and Find Full Text PDF

Protocol for generating protein profiles and distance-based network analysis of murine tissue slices.

STAR Protoc

January 2025

Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany. Electronic address:

We introduce a protocol for spatial proteomics using thin cryotome sections of mouse skeletal muscle tissue. We describe steps for preparing muscle sections and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses to generate spatial protein profiles along the longitudinal skeletal muscle axis. We detail procedures for scanning longitudinal protein profiles and replacing missing data using a sliding window approach.

View Article and Find Full Text PDF

Multi-channel spatio-temporal graph attention contrastive network for brain disease diagnosis.

Neuroimage

January 2025

College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address:

Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!