The salicylic acid pathway is one of the primary plant defense pathways, is ubiquitous in vascular plants, and plays a role in rapid adaptions to dynamic abiotic and biotic stress. Its prominence and ubiquity make it uniquely suited for understanding how biochemistry within plants can mediate ecological consequences. Induction of the salicylic acid pathway has primary effects on the plant in which it is induced resulting in genetic, metabolomic, and physiologic changes as the plant adapts to challenges. These primary effects can in turn have secondary consequences for herbivores and pathogens attacking the plant. These secondary effects can both directly influence plant attackers and mediate indirect interactions between herbivores and pathogens. Additionally, stimulation of salicylic acid related defenses can affect natural enemies, predators and parasitoids, which can recruit to plant signals with consequences for herbivore populations and plant herbivory aboveground and belowground. These primary, secondary, and tertiary ecological consequences of salicylic acid signaling hold great promise for application in agricultural systems in developing sustainable high-yielding management practices that adapt to changing abiotic and biotic environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928651 | PMC |
http://dx.doi.org/10.3390/ijms20235851 | DOI Listing |
Biosensors (Basel)
December 2024
Zhejiang University-University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining 314400, China.
Smartphones equipped with highly integrated sensors are increasingly being recognized as powerful tools for rapid on-site testing. Here, we propose a low-cost, portable, and highly multiplexed smartphone-based spectrometer capable of collecting three types of spectra-transmission, reflection, and fluorescence-by simply replacing the optical fiber attached to the housing. Spectral analysis is performed directly on the smartphone using a custom-developed app.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark.
The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, Florida 32611, United States.
Salicylic acid (SA) exhibits positive effects against Huanglongbing (HLB), but how SA affects citrus resistance to HLB is currently unknown. This study conducted integrated transcriptome and metabolome analyses on SA-treated (HLB-sensitive) and (HLB-tolerant). The results indicated that the syntheses of flavones and flavonols were induced by SA, while the expression levels of associated genes and the contents of corresponding metabolites varied significantly between the two species after SA treatment or HLB infection.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China. Electronic address:
The widely recognized phytohormone, salicylic acid (SA), serves not only as an exogenous additive for fruits and vegetables but, more crucially, as an in vivo regulator of the entire plant growth process. Consequently, it is essential to achieve both in vitro detection and in vivo imaging analysis of the plant hormone SA. In this study, a biocompatible supramolecular probe was crafted using a "label-free" SA aptamer as the host for an aggregation-induced emission (AIE) organic small molecule.
View Article and Find Full Text PDFWei Sheng Yan Jiu
November 2024
Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China.
Objective: To detect phenolic acid compounds in various fruits and explore the differences in phenolic acids among different types of fruits.
Methods: The collected 75 types of fruits were classified into 6 categories: citrus、melon、drupe、berry、tropical fruit and pome fruits. The phenolic acid compounds were detected by high performance liquid chromatography-mass spectrometry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!