Self-assembling peptides are biomedical materials with unique structures that are formed in response to various environmental conditions. Governed by their physicochemical characteristics, the peptides can form a variety of structures with greater reactivity than conventional non-biological materials. The structural divergence of self-assembling peptides allows for various functional possibilities; when assembled, they can be used as scaffolds for cell and tissue regeneration, and vehicles for drug delivery, conferring controlled release, stability, and targeting, and avoiding side effects of drugs. These peptides can also be used as drugs themselves. In this review, we describe the basic structure and characteristics of self-assembling peptides and the various factors that affect the formation of peptide-based structures. We also summarize the applications of self-assembling peptides in the treatment of various diseases, including cancer. Furthermore, the in-cell self-assembly of peptides, termed reverse self-assembly, is discussed as a novel paradigm for self-assembling peptide-based nanovehicles and nanomedicines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928719 | PMC |
http://dx.doi.org/10.3390/ijms20235850 | DOI Listing |
Talanta
December 2024
Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; China-Israel Polypeptide Device and Application Technology Joint Research Center, Hangzhou, 310027, China. Electronic address:
Nitrogen dioxide (NO) is an important contaminant that poses a severe threat to environmental sustainability. Traditional inorganic NO gas detectors are generally used under harsh operating conditions and employ environmentally unfriendly resources, thus preventing widespread practical applications. Herein, self-assembled peptide microtubes (SPMTs) are combined with SnO nanoparticles (NPs) to develop a bioinspired NO gas sensor.
View Article and Find Full Text PDFTissue Eng Regen Med
December 2024
Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
Background: Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy.
In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Restorative Dentistry Department Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
The color masking ability of resin infiltration (RI) and curodont repair fluoride plus-self-assembling peptide (CRFP-SAP) was investigated under various simulated oral challenging conditions. Sixty-four extracted caries-free human canines were randomly divided into two groups: Group 1 (RI) and Group 2 (CRFP-SAP). The baseline color values of samples were recorded using a spectrophotometer (VITA Easyshade Advance 4.
View Article and Find Full Text PDFClin Oral Investig
December 2024
Department of Pedodontics, Faculty of Dentistry, Izmir Katip Celebi University, Izmir, Turkey.
Objectives: This study aims to comparatively assess the preventive and protective effects of the self-assembling peptide P-4 on enamel erosion and evaluate the potential for enamel surface recovery when professional products are combined with home-use dental-care products during the erosive process.
Materials And Methods: Ninety-nine bovine incisors were divided into nine groups: a control group, four groups with the application of professional-products [P-4 peptide (Curodont-Repair), stannous/Sn containing solution (8% Sn), casein-phosphopeptide-amorphous-calcium-phosphate fluoride/CPP-ACPF (MI Varnish), sodium fluoride/NaF (Profluorid)] and four groups with the combination of professional products and home-use daily dental care products [P-4 peptide (Curodont Repair + Curodont Protect), stannous ions containing agents (8% Sn+Emofluor Gel Intensive-Care), CPP-ACPF (MI Varnish + MI Paste Plus), NaF (Profluorid + ReminPro)]. Professional products were applied once before a five-day erosive cycle, involving six 2-minute citric-acid exposures per day.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!