Naringinase is an enzyme complex which exhibits α-l-rhamnosidase and β-d-glucosidase activity. This enzymatic complex catalyzes the hydrolysis of naringin (4',5,7-trihydroxy flavanone 7-rhamnoglucoside), the main bittering component in grapefruit. Reduction of the level of this substance during the processing of juice has been the focus of many studies. The aim of the study was the immobilization of naringinase on chitosan microspheres activated with glutaraldehyde and, finally, the use of such immobilized enzyme for debittering grapefruit juice. The effect of naringinase concentration and characterization of the immobilized enzyme compared to the soluble enzyme were investigated. The maximum activity was observed at optimum pH 4.0 for both free and immobilized naringinase. However, the optimum temperature was shifted from 70 to 40 °C upon immobilization. The K value of the immobilized naringinase was higher than that of soluble naringinase. The immobilization did not change the thermal stability of the enzyme. The immobilized naringinase had good operational stability. This preparation retained 88.1 ± 2.8% of its initial activity after ten runs of naringin hydrolysis from fresh grapefruit juice. The results indicate that naringinase immobilized on chitosan has potential applicability for debittering and improving the sensory properties of grapefruit juices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930494PMC
http://dx.doi.org/10.3390/molecules24234234DOI Listing

Publication Analysis

Top Keywords

grapefruit juice
12
immobilized naringinase
12
immobilization naringinase
8
naringinase chitosan
8
chitosan microspheres
8
debittering grapefruit
8
naringinase
8
juice naringinase
8
immobilized enzyme
8
immobilized
6

Similar Publications

Immobilization of Naringinase onto Polydopamine-Coated Magnetic Iron Oxide Nanoparticles for Juice Debittering Applications.

Polymers (Basel)

November 2024

Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.

Chemical amination of the enzyme was demonstrated to favor immobilization onto polydopamine (PDA)-coated magnetic nanoparticles (MNPs) for the first time, to the best of the author's knowledge. MNPs prepared via hydrothermal synthesis were coated with PDA for the immobilization of naringinase. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy showed that the MNPs were composed mainly of FeO with an average size of 38.

View Article and Find Full Text PDF

Surface functionalization and the combined utilization of zero-dimensional and two-dimensional nanomaterials is an effective method to achieve highly sensitive detection for electrochemical analysis. Using an all-in-one strategy, phthalocyanine, gold nanoparticles, and ionic liquid were successively modified on the graphene surface as a highly integrated electrode modification material. Phthalocyanine can repair the defects of reduced graphene oxide by binding to the graphene structure surface through non-covalent functionalization.

View Article and Find Full Text PDF

Nadolol is a hydrophilic β-adrenoceptor blocker with a relatively long half-life and negligible metabolism. It is a substrate of P-glycoprotein and organic anion transporting polypeptide 1A2, and may serve as an in vivo probe drug for the assessment of drug-drug and food-drug interactions mediated by these transporters. In the present study, we aimed to develop limited sampling strategy (LSS) models for predicting the area under the plasma concentration-time curve (AUC) of nadolol.

View Article and Find Full Text PDF

The production of bacterial cellulose (BC) has indeed garnered global attention due to its versatile properties and applications. Despite potential benefits, the challenges like low productivity, high fermentation costs, and expensive culture media hinder its industrialization. Utilizing low-cost substrates, especially waste streams, can help address the challenges.

View Article and Find Full Text PDF

Flavonoid-Rich Fruit Intake in Midlife and Late-Life and Associations with Risk of Dementia: The Framingham Heart Study.

J Prev Alzheimers Dis

October 2024

Phillip H. Hwang, Boston University School of Public Health, Department of Epidemiology, 715 Albany Street, T3E, Boston, MA 02118, E-mail: Phone: (617) 358-4049.

Background: Fruits are an important source of flavonoids, and greater intake of dietary flavonoids in older adults has been shown to be associated with decreased risk of dementia. It is unclear whether this relationship is similar or different between younger adults and older adults.

Objectives: We examined for associations between midlife and late-life intake of flavonoid-rich fruits and incident dementia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!