Our three-dimensional organotypic culture revealed that human histone demethylase (KDM) 4C, a histone lysine demethylase, hindered the acini morphogenesis of RWPE-1 prostate cells, suggesting its potential oncogenic role. Knockdown (KD) of KDM4C suppressed cell proliferation, soft agar colony formation, and androgen receptor (AR) transcriptional activity in PCa cells as well as reduced tumor growth of human PCa cells in zebrafish xenotransplantation assay. Micro-Western array (MWA) analysis indicated that KD of KDM4C protein decreased the phosphorylation of AKT, c-Myc, AR, mTOR, PDK1, phospho-PDK1 S241, KDM8, and proteins involved in cell cycle regulators, while it increased the expression of PTEN. Fluorescent microscopy revealed that KDM4C co-localized with AR and c-Myc in the nuclei of PCa cells. Overexpression of either AKT or c-Myc rescued the suppressive effect of KDM4C KD on PCa cell proliferation. Echoing the above findings, the mRNA and protein expression of KDM4C was higher in human prostate tumor tissues as compared to adjacent normal prostate tissues, and higher KDM4C protein expression in prostate tumors correlated to higher protein expression level of AKT and c-Myc. In conclusion, KDM4C promotes the proliferation of PCa cells via activation of c-Myc and AKT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896035PMC
http://dx.doi.org/10.3390/cancers11111785DOI Listing

Publication Analysis

Top Keywords

akt c-myc
16
pca cells
16
protein expression
12
histone demethylase
8
kdm4c
8
cells activation
8
cell proliferation
8
kdm4c protein
8
cells
6
c-myc
6

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.

View Article and Find Full Text PDF

Humans have more than 270,000 lncRNAs. Among these, lncRNA HOXA-AS2 is considered a transformative gene involved in various cellular processes, including cell proliferation, apoptosis, migration, and invasion. Thus, it can be regarded as a potential tumor marker for both diagnosis and prognosis.

View Article and Find Full Text PDF

Object: Rheumatoid arthritis (RA) is a prevalent and currently incurable autoimmune disease. Existing conventional medical treatments are limited in their efficacy, prolonged disease may lead to bone destruction, joint deformity, and loss of related functions, which places a huge burden on RA patients and their families. For millennia, the use of traditional Chinese medicine (TCM), exemplified by the Gui-Zhi-Shao-Yao-Zhi-Mu decoction (GZSYZM), has been demonstrated to offer distinct therapeutic advantages in the management of RA.

View Article and Find Full Text PDF

Background/aim: Lung cancer, a predominant contributor to cancer mortality, is characterized by diverse etiological factors, including tobacco smoking and genetic susceptibilities. Despite advancements, particularly in nonsmall-cell lung cancer (NSCLC), therapeutic options for lung squamous cell carcinoma (LUSC) are limited. Transposable elements (TEs) and their regulatory proteins, such as tigger transposable element derived (TIGD) family proteins, have been implicated in cancer development.

View Article and Find Full Text PDF

Daurisoline inhibits glycolysis of lung cancer by targeting the AKT-HK2 axis.

Cancer Biol Ther

December 2025

Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, China.

Lung cancer, one of the most prevalent tumors, remains a clinical challenge with a poor five-year survival rate. Daurisoline, a bis-benzylisoquinoline alkaloid derived from the traditional Chinese herb Menispermum dauricum, is known to suppress tumor growth effectively. However, its precise mechanism of action remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!