A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How Molecular Weight Cut-Offs and Physicochemical Properties of Polyether Sulfone Membranes Affect Peptide Migration and Selectivity during Electrodialysis with Filtration Membranes. | LitMetric

How Molecular Weight Cut-Offs and Physicochemical Properties of Polyether Sulfone Membranes Affect Peptide Migration and Selectivity during Electrodialysis with Filtration Membranes.

Membranes (Basel)

Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre and Department of Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada.

Published: November 2019

Filtration membranes (FMs) are an integral part of electrodialysis with filtration membranes (EDFM), a green and promising technology for bioactive peptide fractionation. Therefore, it is paramount to understand how physicochemical properties of FMs impact global and selective peptide migration to anionic (A) and cationic (C) peptide recovery compartments during their simultaneous separation by EDFM. In this context, six polyether sulfone (PES) membranes with molecular weight cut-offs (MWCO) of 5, 10, 20, 50, 100 and 300 kDa were characterized and used during EDFM to separate peptides from a complex whey protein hydrolysate. Surface charge, roughness, thickness and surface/pores nature of studied PES membranes were similar with small differences in conductivity, porosity and pore size distribution. Interestingly, global peptides migration to both recovery compartments increased linearly as a function of MWCO. However, peptide selectivity changed according to the recovery compartments and/or the peptide's charge and MW with an increase in MWCO of FMs. Indeed, in A, the relative abundance (RA) of peptides having low negative charge and MW (IDALNENK and VLVLDTDYK) decreased (45% to 19%) with an increase in MWCO, while the opposite for peptides having high negative charge and MW (TPEVDDEALEK, TPEVDDEALEKFDK & VYVEELKPTPEGDLEILLQK) (increased from 16% to 43%). Concurrently, in C, regardless of MWCO used, the highest RA was observed for peptides having low positive charge and MW (IPAVFK & ALPMHIR). It was the first time that the significant impact of charge, MWCO and pore size distribution of PES membranes on a wide range of MWCO was demonstrated on EDFM performances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918500PMC
http://dx.doi.org/10.3390/membranes9110153DOI Listing

Publication Analysis

Top Keywords

filtration membranes
12
recovery compartments
12
pes membranes
12
molecular weight
8
weight cut-offs
8
physicochemical properties
8
polyether sulfone
8
peptide migration
8
electrodialysis filtration
8
pore size
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!