Nowadays, water quality monitoring is an essential task since environmental contamination and human exposure to heavy metals increased. Sensors that are able to detect ever lower concentrations of heavy metal ions with greater accuracy and speed are needed to effectively monitor water quality and prevent poisoning. This article shows studies of the modification of flexible track-etched membranes as the basis for the sensor with various polymers and their influence on the accuracy of detection of copper, cadmium, and lead ions in water. We report the UV-induced graft (co)polymerization of acrylic acid (AA) and 4-vinylpyridine (4-VPy) on poly(ethylene terephthalate) track-etched membrane (PET TeMs) and use them after platinum layer sputtering in square wave anodic stripping voltammetry (SW-ASV) for detection of Cu, Cd, and Pb. Optimal conditions leading to functionalization of the surface and retention of the pore structure were found. Modified membranes were characterized by SEM, FTIR, X-ray photoelectron spectroscopy (XPS) and colorimetric analysis. The dependence of the modification method on the sensitivity of the sensor was shown. Membrane modified with polyacrylic acid (PET TeMs-g-PAA), poly(4-vinylpyridine) (PET TeMs-g-P4VPy), and their copolymer (PET TeMs-g-P4VPy/PAA) with average grafting yield of 3% have been found to be sensitive to µg/L concentration of copper, lead, and cadmium ions. Limits of detection (LOD) for sensors based on PET TeMs-g-PAA are 2.22, 1.05, and 2.53 µg/L for Cu, Pb, and Cd, respectively. LODs for sensors based on PET TeMs-g-P4VPy are 5.23 µg/L (Cu), 1.78 µg/L (Pb), and 3.64 µg/L (Cd) µg/L. PET TeMs-g-P4VPy/PAA electrodes are found to be sensitive with LODs of 0.74 µg/L(Cu), 1.13 µg/L (Pb), and 2.07 µg/L(Cd). Thus, it was shown that the modification of membranes by copolymers with carboxylic and amino groups leads to more accurate detection of heavy metal ions, associated with the formation of more stable complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6918391 | PMC |
http://dx.doi.org/10.3390/polym11111876 | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.
The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China.
The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!