A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large-scale pattern transfer based on non-through-hole AAO self-supporting membranes. | LitMetric

Fabricating large-scale nanoarrays is a significant and challenging work in the field of nanometer devices. Anodic aluminum oxide (AAO) membrane is considered as a promising mask due to its inherent advantages such as low-cost and tunable pore diameter. However, there are few reports on the use of non-through-hole large-area AAO membrane as a mask. Due to its higher mechanical strength, non-through-hole AAO membrane has the advantage of self-supporting for large-area fabrication. Herein, we present a robust approach to transferring nanopattern to substrates with high fidelity by using the non-through-hole AAO membrane as an etching mask. A novel two-step inductively coupled plasma (ICP) etching method is adopted. The morphological evolution of the AAO during ICP etching is systematically investigated. The aspect ratio of the AAO can be quantitatively controlled by adjusting etching time. The AAO nanopore arrays with an area of 7.1 cm are successfully transferred to gallium nitride wafer to enhance photoluminescence. The luminous intensity of the nano-array LED with a pore diameter of 400 nm and a depth of 150 nm is improved by 3.4 times compared with the LED without the nano-array. This method extends the opportunities for AAO mask to serve as generic templates for novel applications that are previously impractical due to the difficulty of large-scale nano-pattern transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab5b36DOI Listing

Publication Analysis

Top Keywords

aao membrane
16
non-through-hole aao
12
aao
9
pore diameter
8
icp etching
8
large-scale pattern
4
pattern transfer
4
transfer based
4
non-through-hole
4
based non-through-hole
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!