Chemical and biological studies of Re(I)/Tc(I) thiosemicarbazonate complexes relevant for the design of radiopharmaceuticals.

J Inorg Biochem

Department of Inorganic Chemistry, University of Vigo, Chemistry Faculty, E-36310 Vigo, Galicia, Spain; Metallosupramolecular Chemistry Group, Galicia South Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Galicia, Spain. Electronic address:

Published: February 2020

Five thiosemicarbazones (HL) derived from 4,6-diacetylresorcinol (n = 1-4) and salicylaldehyde (n = 5) have been synthesized and spectroscopically characterized. Single crystal X-ray diffraction studies on some of them show that the molecular structure is dominated by intramolecular hydrogen bonds involving the O(1)-H group of the resorcinol/salicylaldehyde group and the azomethinic nitrogen atom and sulfur atom of the thiosemicarbazone arm. All of the ligands react with fac-[ReBr(CO)(CHCN)] in the presence of NEt to form the stable anionic complexes [NHEt][fac-[Re(L)(CO)] (1-5). The thiosemicarbazonate ligand, as suggested by spectroscopic data and confirmed by X-ray diffraction, acts as a tridentate S,N,O system. The complexes are stable in solution for weeks, although other dimeric species were also detected by X-ray diffraction analysis. The reaction of fac-[Tc(CO)(HO)] with the appropriate ligand at 100 °C for 30 min yielded the complexes [fac-[Tc(L)(CO)] (Tc1-Tc5). The radiochemical yield and purity were determined by HPLC and their chemical identity was ascertained by comparing their radiochromatogram with the chromatogram of the rhenium congeners (1-5). The results of biodistribution studies in mice on the five technetium compounds showed rapid blood clearance and fast liver uptake that slowly cleared into the intestines, a finding that indicates the hepatobiliary tract as the major excretory pathway. HPLC analysis of urine and blood serum samples from mice injected with the Tc complexes confirmed their in vivo stability since the predominant radiochemical species had the same retention time as the corresponding injected compound.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2019.110917DOI Listing

Publication Analysis

Top Keywords

x-ray diffraction
12
complexes
5
chemical biological
4
biological studies
4
studies rei/tci
4
rei/tci thiosemicarbazonate
4
thiosemicarbazonate complexes
4
complexes relevant
4
relevant design
4
design radiopharmaceuticals
4

Similar Publications

This research investigates the potential of utilizing types of construction waste as partial cement replacements within concrete formulations. Notably, granodiorite and ceramic powders were introduced at varying substitution ratios. The impact of these waste materials on the compressive strength and radiation shielding effectiveness of traditional concrete was evaluated under both ambient and elevated temperature conditions.

View Article and Find Full Text PDF

Enhanced photocatalytic degradation of Rhodamine B using polyaniline-coated XTiO(X = Co, Ni) nanocomposites.

Sci Rep

January 2025

Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.

In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.

View Article and Find Full Text PDF

Low Temperature Atomic Layer Deposition of (00l)-Oriented Elemental Bismuth.

Angew Chem Int Ed Engl

January 2025

Leibniz-Institut fur Festkorper- und Werkstoffforschung Dresden eV, Helmholtzstraße 20, 01069, Dresden, GERMANY.

This study presents the first successful demonstration of growing elemental bismuth (Bi) thin films via thermal atomic layer deposition (ALD) using Bi(NMe2)3 as the precursor and Sb(SiMe3)3 as the co-reactant. The films were deposited at a relatively low temperature of 100 °C, with a growth per cycle (GPC) of 0.31-0.

View Article and Find Full Text PDF

Dy/Tb co-doped glasses have drawn profound attention for their potential in solid state lighting due to their unique luminescence properties. This research highlights the effect of compositional variation on structural and optical characteristics of Dy/Tb co-doped phospho-tellurite glasses through a comprehensive analysis involving X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and photoluminescence (PL) studies. XRD and FTIR spectroscopy are conducted to characterize the glass matrix and confirm its structural integrity.

View Article and Find Full Text PDF

In recent years, studies of surfaces at more realistic conditions has advanced significantly, leading to an increased understanding of surface dynamics under reaction conditions. The development has mainly been due to the development of new experimental techniques or new experimental approaches. Techniques such as High Pressure Scanning Tunneling/Force Microscopy (HPSTM/HPAFM), Ambient Pressure X-ray Photo emission Spectroscopy (APXPS), Surface X-Ray Diffraction (SXRD), Polarization-Modulation InfraRed Reflection Absorption Spectroscopy (PMIRRAS) and Planar Laser Induced Fluorescence (PLIF) at semi-realistic conditions has been used to study planar model catalysts or industrial materials under operating conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!