A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Production of H-rich syngas from gasification of unsorted food waste in supercritical water. | LitMetric

In China, waste sorting practice is not strictly followed, plastics, especially food packaging, are commonly mixed in food waste. Supercritical water gasification (SCWG) of unsorted food waste was conducted in this study, using model unsorted food waste by mixture of pure food waste and plastic. Different operating parameters including reaction temperature, residence time, and feedstock concentration were investigated. Moreover, the effect of three representative food additives namely NaCl, NaHCO and NaCO were tested in this work. Finally, comparative analysis about SCWG of unsorted food waste, pure food waste, and plastic was studied. It was found that higher reaction temperature, longer residence time and lower feedstock concentration were advantageous for SCWG of unsorted food waste. Within the range of operating parameters in this study, when the feedstock concentration was 5 wt%, the highest H yield (7.69 mol/kg), H selectivity (82.11%), total gas yield (17.05 mol/kg), and efficiencies of SCWG (cold gas efficiency, gasification efficiency, carbon gasification efficiency, and hydrogen gasification efficiency) were obtained at 480 °C for 75 min. Also, the addition of food additives with Na promoted the SCWG of unsorted food waste. The NaCO showed the best catalytic performance on enhancement of H and syngas production. This research demonstrated the positive effect of waste sorting on the SCWG of food waste, and provided novel results and information that help to overcome the problems in the process of food waste treatment and accelerate the industrial application of SCWG technology in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.11.018DOI Listing

Publication Analysis

Top Keywords

food waste
44
unsorted food
24
scwg unsorted
16
food
14
waste
13
feedstock concentration
12
gasification efficiency
12
waste supercritical
8
supercritical water
8
waste sorting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!