Design and implementation of a low-cost, tabletop MRI scanner for education and research prototyping.

J Magn Reson

A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences Technology, Cambridge, MA, USA.

Published: January 2020

While access to a laboratory MRI system is ideal for teaching MR physics as well as many aspects of signal processing, providing multiple MRI scanners can be prohibitively expensive for educational settings. To address this need, we developed a small, low-cost, open-interface tabletop MRI scanner for academic use. We constructed and tested 20 of these scanners for parallel use by teams of 2-3 students in a teaching laboratory. With simplification and down-scaling to a 1 cm FOV, fully-functional scanners were achieved within a budget of $10,000 USD each. The design was successful for teaching MR principles and basic signal processing skills and serves as an accessible testbed for more advanced MR research projects. Customizable GUIs, pulse sequences, and reconstruction code accessible to the students facilitated tailoring the scanner to the needs of laboratory exercise. The scanners have been used by >800 students in 6 different courses and all designs, schematics, sequences, GUIs, and reconstruction code is open-source.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2019.106625DOI Listing

Publication Analysis

Top Keywords

tabletop mri
8
mri scanner
8
signal processing
8
reconstruction code
8
design implementation
4
implementation low-cost
4
low-cost tabletop
4
mri
4
scanner education
4
education prototyping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!