Investigation of TEMPO partitioning in different skin models as measured by EPR spectroscopy - Insight into the stratum corneum.

J Magn Reson

Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany. Electronic address:

Published: January 2020

Electron paramagnetic resonance (EPR) spectroscopy represents an established tool to study properties of microenvironments, e.g. to investigate the structure and dynamics of biological and artificial membranes. In this study, the partitioning of the spin probe 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in ex vivo human abdominal and breast skin, ex vivo porcine abdominal and ear skin as well as normal and inflammatory in vitro skin equivalents was investigated by EPR spectroscopy. Furthermore, the stratum corneum (SC) lipid composition (as determined by high-performance thin-layer chromatography), SC lipid chain order (probed by infrared spectroscopy) and the SC thickness (investigated by histology) were determined in the skin models. X-band EPR measurements have shown that TEMPO partitions in the lipophilic and hydrophilic microenvironment in varying ratios in different ex vivo and in vitro skin models. Ex vivo human abdominal skin exhibited the highest amount of TEMPO in the lipophilic microenvironment. In contrast, the lowest amount of TEMPO in the lipophilic microenvironment was determined in ex vivo human breast skin and the inflammatory in vitro skin equivalents. Individual EPR spectra of epidermis including SC and dermis indicated that the lipophilic microenvironment of TEMPO mainly corresponds to the most lipophilic part of the epidermis, the SC. The amount of TEMPO in the lipophilic microenvironment was independent of the SC lipid composition and the SC lipid chain order but correlated with the SC thickness. In conclusion, EPR spectroscopy could be a novel technique to determine differences in the SC thickness, thus suitably complementing existing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2019.106637DOI Listing

Publication Analysis

Top Keywords

epr spectroscopy
16
lipophilic microenvironment
16
skin models
12
vivo human
12
vitro skin
12
amount tempo
12
tempo lipophilic
12
skin
9
stratum corneum
8
human abdominal
8

Similar Publications

Pyrrole in a cholesteric liquid crystal was discharged using a Tesla coil to generate pyrrole radicals, affording linear-shaped nano-ordered pyrrole oligomers. Subsequently, the electrochemical polymerisation of a pre-oriented pyrrole oligomer having good affinity for liquid crystals was performed to achieve polypyrrole-imprinted asymmetry from the cholesteric liquid crystal structure. The resultant polymers were analysed using polarising optical microscopy observations, scanning electron microscopy, electrochemistry, optical spectroscopy, and electron spin resonance.

View Article and Find Full Text PDF

Synthesis and characterization of allomelanin model from 1,8-dihydroxynaphthalene autooxidation.

Sci Rep

January 2025

Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.

In this work a novel method for synthesis of 1,8-dihydroxynaphthalene melanin was presented, as well as the physicochemical properties, molecular structure, and characteristics of the pigment. The proposed synthesis protocol is simple and cost-effective with no enzymes or catalysts needed. The final product is not adsorbed on any surface, since the pigment is the result of autooxidation of 1,8-dihydroxynaphthalene.

View Article and Find Full Text PDF

We developed a technique allowing the direct observation of photoinduced charge-transfer states (CTSs)-the weakly coupled electron-hole pairs preceding the completely separated charges in organic photovoltaic (OPV) blends. Quadrature detection of the electron spin echo (ESE) signal enables the observation of an out-of-phase ESE signal of CTS. The out-of-phase Electron-Electron Double Resonance (ELDOR) allows measuring electron-hole distance distributions within CTS and its temporal evolution in the microsecond range.

View Article and Find Full Text PDF

Eliminating hazardous antibiotics from aquatic environments has become a major concern in recent years. Tetracycline (TC) compounds pose a challenge for the selective degradation of harmful chemical groups. In this study, we successfully designed carbon vacancies in a gCN@WC (GW) heterostructure for the effective removal of TC pollutants under visible light.

View Article and Find Full Text PDF

Peroxydisulfate (PDS) activation is a crucial process for wastewater treatment in complicated water matrices. However, it is frequently limited because of poor selectivity, sluggish kinetics, and short lifetime of radicals. Therefore, in this study, an efficient sulfur-doped CN/DyFeO (SCN/DyF) Z-scheme heterostructure catalyst was rationally developed using a simple wet-chemical strategy to photoactivate PDS, which can effectively degrade norfloxacin (NOR; 96.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!