Viola arvensis cells were selected after treatment with Zn or Pb and regenerated into plants likely to have higher tolerance levels than the initial plant. The surviving cells in the suspension treated with 2000 μM of Zn, 2000 μM of Pb or 0 μM for 72 h were maintained on a solidified half-strength MS medium supplemented with 0.5 mg L TDZ to induce divisions and organogenesis. The adventitious shoots obtained were rooted on a half-strength MS medium with 1 mg L IBA. Regenerants derived from the Zn- and Pb-treated cells were vigorous and fully fertile. The in vitro conditions and metal impact generated a low genome alteration and overall low genetic diversity of regenerants compared to the initial plant and plants from the natural population. The cells of regenerants obtained after Pb treatment represented an approximately 12% higher tolerance level to Pb than the cells of the initial plant. This is the first report of plant regeneration from highly tolerant cells selected by heavy metal treatment. Regenerants successfully obtained in vitro could be considered as a source material for the recultivation of areas polluted with heavy metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2019.11.024 | DOI Listing |
J Ethnobiol Ethnomed
January 2025
Department of Biology, College of Natural and Computational Science, Arba Minch University, Arba Minch, Ethiopia.
Background: Homegardens (HGs) are well-time-honored traditional land use systems in small plots of land with purposely designed intricate structure and a mixture of planted vascular plants (VPs) for different purposes. Hence, the present study was initiated to investigate the ethnobotanical information of vascular plants of homegardens and their use, conservation and management practice by the people of Dawuro in southwestern Ethiopia.
Methods: A total of 162 farmer informants were selected and interviewed within a distance of < 2 km, 2-4 km and > 4 km between the natural forest and homegardens, and 0.
Sci Rep
January 2025
College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
Ethylene is a signalling factor that plays a key role in the response of plants to abiotic stresses, such as cold stress. Recent studies have shown that the exogenous application of 1-aminocyclopropane-1-carboxylate (ACC), an ethylene promoter, affects plant cold tolerance. The cold-responsive specific gene DREB plays a crucial role in enhancing cold tolerance in plants by activating several cold-responsive (COR) genes.
View Article and Find Full Text PDFISA Trans
January 2025
Dept. de Ingeniería de Sistemas y Automática, University of Seville, Camino de los Descubrimientos, no number E-41092, Seville, Spain. Electronic address:
This article proposes using the extended Kalman filter (EKF) for recurrent neural network (RNN) training and fault estimation within a parabolic-trough solar plant. The initial step involves employing an RNN to model the system. Given the challenge of fault discernibility in the collectors, parallel EKFs are employed to reconstruct the parameters of the faults.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Lipids, as key components of biological membranes, play vital roles in sensing and initiating plant responses to various abiotic stresses. Here, the alteration of membrane fatty acids in wheat roots under Al stress was investigated using two genotypes differing in Al tolerance, and the role of linoleic acid in Al tolerance was comprehensively explored. Significant differences in the fatty acid profiles were observed, with increased linoleic acid accumulation in the Al-tolerant genotype.
View Article and Find Full Text PDFEnzyme Microb Technol
January 2025
Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China.
2-Phenylethanol, an aromatic alcohol with a rose scent, is widely used in the cosmetics, food, and pharmaceutical industries. We designed an efficient multi-enzyme cascade pathway for production of 2-phenylethanol from styrene as the substrate. Initially, 2-phenylethanol was produced by overexpression of styrene monooxygenase A (styA), styrene monooxygenase B (styB), styrene oxide isomerase (SOI), alcohol dehydrogenase (yahK), and glucose dehydrogenase (gdh) in Escherichia coli to give 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!