Agronomic potential of biochar prepared from brewery byproducts.

J Environ Manage

School of Environmental Engineering, Technical University of Crete, 73100, Chania, Greece. Electronic address:

Published: February 2020

This work investigated the effect of biochar produced from brewery byproducts, spent grain and surplus yeast on the physicochemical characteristics of a calcareous loam soil and plant growth of maize (Zea mays L.). Maize is a plant which needs high nitrogen fertilization, while the effect of acidic or neutral biochars on alkaline calcareous soils has only been assessed in a few studies. The effect of biochars on dry weight, as well as the level of macro- and micronutrients in soil, and above- and belowground plant tissues, were investigated, in a 30 day experiment after seedling emergence of maize (Zea mays L.), in the presence and absence of nitrogen fertilization. The results indicated that biochar from organic brewery by-products significantly increased the dry weight of the aboveground part of the plant by 59-186%, relative to the control, without the addition of inorganic N fertilization, and by 46-157% with the addition of inorganic N fertilization. The dry weight of the belowground plant tissues significantly increased by 83-92% and 46-106%, relative to the control, with or without the addition of inorganic N fertilization, respectively. Biochar addition, especially at 5% application rate individually or in a mixture, significantly increased the phosphorus content of plant tissues. The content of potassium in the plants was affected mainly by the addition of biochar derived from surplus yeast, while the concentration of calcium and magnesium in plant tissues was positively affected by spent grain biochar, in absence of inorganic nitrogen fertilization. Addition of biochars produced from brewery byproducts improved soil fertility parameters, particularly the contents of total organic carbon (by 133% and 118% with or without fertilization, respectively), total nitrogen (by 120% and 81% respectively) and available phosphorus in the studied loam calcareous soil. Overall, biochar from brewery wastes showed the potential to enhance plant growth and nutrient availability, thus it is a promising organic fertilizer for sustainable agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.109856DOI Listing

Publication Analysis

Top Keywords

plant tissues
16
brewery byproducts
12
nitrogen fertilization
12
dry weight
12
addition inorganic
12
inorganic fertilization
12
produced brewery
8
spent grain
8
surplus yeast
8
plant
8

Similar Publications

The impact of deicer and anti-icer use on plant communities in stormwater detention basins: Characterizing salt stress and phytoremediation potential.

Sci Total Environ

January 2025

Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA.

We present the results of a 1-year study that quantified salt levels in stormwater, soils, and plant tissues from 14 stormwater detention basins across Northern VA in an above-average snow year. We characterize (1) the level of salt stress plants experience, (2) the extent to which current plant communities feature salt tolerant species, and (3) the capacity of these species to phytoremediate soils and reduce the impacts of deicer and anti-icer use. Our results suggest that detention basin vegetation experience a range of salt stress levels that depend on drainage area type (roads: moderate to high > parking lots: low to moderate > pervious areas: none).

View Article and Find Full Text PDF

High-precision Cu isotopic analysis of human dietary Cu sources via multi-collector ICP-mass spectrometry.

Food Chem

December 2024

Atomic and Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, 9000 Ghent, Belgium. Electronic address:

The disruption of Cu homeostasis is associated with the pathogenesis of many diseases and can result in alterations in Cu isotope fractionation. Changes in the Cu isotope ratio (Cu/Cu) of body fluids and tissues have been observed in liver disorders, cancers, and other diseases, displaying diagnostic/prognostic potential. However, it is not entirely clear whether certain physiological or lifestyle factors may also influence the bodily Cu isotopic composition, potentially obfuscating the signature of the pathology.

View Article and Find Full Text PDF

Genome-wide analysis of GRAS gene family and functional identification of a putative development and maintenance of axillary meristematic tissue gene PlGRAS22 in Paeonia ludlowii.

Int J Biol Macromol

January 2025

School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:

The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.

View Article and Find Full Text PDF

Calcium oxalate crystals in cacao trees and their interactions with cadmium.

Plant Physiol Biochem

January 2025

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000, Grenoble, France.

Cadmium (Cd) concentrations in cacao beans from Latin America often exceed limits for trading. A better understanding of the mechanisms of Cd accumulation in Theobroma cacao L. trees is necessary to advance mitigation strategies.

View Article and Find Full Text PDF

Plant-derived exosome-like nanoparticles in tissue repair and regeneration.

J Mater Chem B

January 2025

College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.

This article reviews plant-derived exosome-like nanoparticles (ELNs), and highlights their potential in regenerative medicine. Various extraction techniques, including ultracentrifugation and ultrafiltration, and their impact on ELN purity and yield were discussed. Characterization methods such as microscopy and particle analysis are found to play crucial roles in defining ELN properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!