Osteoarthritis (OA) is a common and disabling joint disease mainly characterized by cartilage degradation, with the knees most commonly affected. No effective treatment for the cartilage degradation of OA exists. Preliminary studies have revealed the protective and osteogenic effects of osthole, a natural coumarin first isolated from Cnidium monnieri (Fructus Cnidii); however, no evidence of osthole in an OA-related model has been published to date. This study further explored the effects of osthole in a monoiodoacetate (MIA)-induced OA-related animal model and focused on the molecular mechanism(s) behind the anti-inflammatory and cartilage protective effects of osthole. This study revealed that the cartilage protective effect of osthole in a MIA-induced osteoarthritis (OA) murine model can be explained by downregulation of COX-2 and RUNX2 by inhibition of NF-κB and HIF-2α up-regulated by OA induction, resulting in downregulation of MMP-13, Syndecan IV and ADAMTS-5. In addition, osthole might have anti-inflammatory and analgesic effects due to COX-2 inhibition. Osthole can be considered as a potential component of the treatment of OA, for it possesses a cartilage protective effect, as well as anti-inflammation, analgesic, and movement improving effects. Further preclinical and human clinical studies are needed to examine the efficacy and safety profile of long-term therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2019.172799 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!