To identify countries that have seasonal patterns similar to the time series of influenza surveillance data in the United States and other countries, and to forecast the 2018-2019 seasonal influenza outbreak in the U.S., we collected the surveillance data of 164 countries using the FluNet database, search queries from Google Trends, and temperature from 2010 to 2018. Data for influenza-like illness (ILI) in the U.S. were collected from the Fluview database. We identified the time lag between two time-series which were weekly surveillances for ILI, total influenza (Total INF), influenza A (INF A), and influenza B (INF B) viruses between two countries using cross-correlation analysis. In order to forecast ILI, Total INF, INF A, and INF B of next season (after 26 weeks) in the U.S., we developed prediction models using linear regression, auto regressive integrated moving average, and an artificial neural network (ANN). As a result of cross-correlation analysis between the countries located in northern and southern hemisphere, the seasonal influenza patterns in Australia and Chile showed a high correlation with those of the U.S. 22 weeks and 28 weeks earlier, respectively. The R2 score of ANN models for ILI for validation set in 2015-2019 was 0.758 despite how hard it is to forecast 26 weeks ahead. Our prediction models forecast that the ILI for the U.S. in 2018-2019 may be later and less severe than those in 2017-2018, judging from the influenza activity for Australia and Chile in 2018. It allows to estimate peak timing, peak intensity, and type-specific influenza activities for next season at 40th week. The correlation between seasonal influenza patterns in the U.S., Australia, and Chile could be used to forecast the next seasonal influenza pattern, which can help to determine influenza vaccine strategy approximately six months ahead in the U.S.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876883PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220423PLOS

Publication Analysis

Top Keywords

seasonal influenza
20
influenza
13
australia chile
12
united states
8
influenza activities
8
surveillance data
8
ili total
8
total inf
8
inf influenza
8
influenza inf
8

Similar Publications

Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the coupling between national epidemics, considering heterogeneous coverage of epidemiological, and virological data, integrating different data sources. We propose a novel-combined approach based on a dynamical model of global influenza spread (GLEAM), integrating high-resolution demographic, and mobility data, and a generalized linear model of phylogeographic diffusion that accounts for time-varying migration rates.

View Article and Find Full Text PDF

Introduction Asthma prevalence among Saudi adults aged 20-44 years in Riyadh is high, with 11.3% reporting physician-diagnosed asthma, exceeding rates in most countries using similar methods. In Aseer province, one out of five adults is estimated to have asthma.

View Article and Find Full Text PDF

Enhancing antibody levels and T cell activity of quadrivalent influenza vaccine by combining it with CpG HP021.

Sci Rep

December 2024

State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.

View Article and Find Full Text PDF

Introduction: To assess the susceptibility of epidemic influenza viruses to the four most used neuraminidase inhibitors (NAIs) during the 2023-24 influenza season in Japan, we measured the 50% inhibitory concentration (IC) of oseltamivir, peramivir, zanamivir, and laninamivir in virus isolates from the sample of 100 patients.

Methods: Viral isolation was done using specimens obtained before and after treatment, with the type/subtype determined by RT-PCR using type- and subtype-specific primers. IC values were determined by a neuraminidase inhibition assay using a fluorescent substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!