Legionnaires' disease, a form of pneumonia which can be fatal, is transmitted via the inhalation of water droplets containing Legionella bacteria. These droplets can be dispersed in the atmosphere several kilometers from their source. The most common such sources are contaminated water within cooling towers and other air-conditioning systems but other sources such as ornamental fountains and spa pools have also caused outbreaks of the disease in the past. There is an obvious need to locate and eliminate any such sources as quickly as possible. Here a maximum likelihood model estimating the source of an outbreak from case location data has been developed and implemented. Unlike previous models, the average dose exposure sub-model is formulated using a atmospheric dispersion model. How the uncertainty in inferred parameters can be estimated is discussed. The model is applied to the 2012 Edinburgh Legionnaires' disease outbreak.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876933 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224144 | PLOS |
Int J Gen Med
January 2025
Department of Respiratory and Critical Care Medical Department Infectious Diseases Ward, The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.
Background: This study examines the distribution characteristics of pathogenic bacteria in respiratory infections and their relationship with inflammatory markers to guide clinical drug use.
Methods: We selected 120 patients with lower respiratory tract infection in the electronic medical record system of Xinjiang Provincial People's Hospital from March 2019 to March 2023 for a case-control study. Using Indirect Immunofluorescence Antibody test(IFA), blood routine, C-reactive Protein (CRP), and High-sensitivity C-reactive Protein(hsCRP), we detected nine respiratory pathogens (Respiratory syncytial virus; Influenza A virus; Influenza B virus; Parainfluenza virus; Adenovirus; Mycoplasma pneumoniae; Chlamydia pneumoniae; Legionella pneumophila type 1; Rickettsia Q) in all patients and analyzed their distribution and correlation.
Biomolecules
January 2025
Department of Microbiology-Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
HtpB, the chaperonin of the bacterial pathogen , is found in extracellular locations, even the cytoplasm of host cells. Although chaperonins have an essential cytoplasmic function in protein folding, HtpB exits the cytoplasm to perform extracellular virulence-related functions that support 's lifestyle. The mechanism by which HtpB reaches extracellular locations is not currently understood.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA.
and are two phylogenetically related bacterial pathogens that exhibit extreme intrinsic resistance when they enter into a dormancy-like state. This enables both pathogens to survive extended periods in growth-limited environments. Survival is dependent upon their ability to undergo developmental transitions into two phenotypically distinct variants, one specialized for intracellular replication and another for prolonged survival in the environment and host.
View Article and Find Full Text PDFInt J Infect Dis
January 2025
National reference centre for Legionella pneumophila, Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium.
Introduction: The incidence of Legionnaires' disease (LD) steadily increases worldwide. Although Legionella pneumophila is known as pathogenic, systematic investigations into antibiotic resistance are scarce, and reports of resistance in isolates are recently emerging.
Methods: Clinical cases and metadata reported to the Belgian National Reference Centre between 2011 and 2022 were retrospectively analysed.
BMC Pulm Med
January 2025
Department of Respiratory and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 800 Zhongshan Road, Liandu District, Lishui, Zhejiang, 323000, China.
Background: Legionella pneumophila is an uncommon pathogen causing community-acquired atypical pneumonia. Acinetobacter baumannii is a major pathogen responsible for hospital-acquired pneumonia, but it rarely causes serious infections in a community setting. Without prompt and appropriate treatments, infection from either of these two pathogens can cause a high mortality rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!