Digital care management programs can reduce health care costs and improve quality of care. However, it is unclear how to target patients who are most likely to benefit from these programs ex ante, a shortcoming of current "risk score"-based approaches across many interventions. This study explores a framework to define impactability by using machine learning (ML) models to identify those patients most likely to benefit from a digital health intervention for care management. Anonymized insurance claims data were used from a commercially insured population across several US states and combined with inferred sociodemographic data. The approach involves creating 2 models and the comparative analysis of the methodologies and performances therein. The authors first train a cost prediction model to calculate the differences in predicted (without intervention) versus actual (with onboarding onto digital health platform) health care expenditures for patients (N 5600). This enables classification impactability if differences in predicted versus actual costs meet a predetermined threshold. Several random forest and logistic regression machine learning models were then trained to accurately categorize new patients as impactable versus not impactable. These parameters are modified through grid search to define the parameters that deliver optimal performance, reaching an overall sensitivity of 0.77 and specificity of 0.65 among all models. This approach shows that impactability for a digital health intervention can be successfully defined using ML methods, thus enabling efficient allocation of resources. This framework is generalizable to analyzing impactability of any intervention and can contribute to realizing closed-loop feedback systems for continuous improvement in health care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/pop.2019.0132 | DOI Listing |
Ann Intern Med
January 2025
959 Medical Operations Squadron, U.S. Air Force, Department of Neurology, Brooke Army Medical Center, San Antonio, Texas (T.K.).
Description: In July 2024, the U.S. Department of Veterans Affairs (VA) and U.
View Article and Find Full Text PDFJMIR Diabetes
January 2025
Research Institute, BC Children's Hospital, Vancouver, BC, Canada.
Background: Beyond physical health, managing type 1 diabetes (T1D) also encompasses a psychological component, including diabetes distress, that is, the worries, fears, and frustrations associated with meeting self-care demands over the lifetime. While digital health solutions have been increasingly used to address emotional health in diabetes, these technologies may not uniformly meet the unique concerns and technological savvy across all age groups.
Objective: This study aimed to explore the mental health needs of adolescents with T1D, determine their preferred modalities for app-based mental health support, and identify desirable design features for peer-delivered mental health support modeled on an app designed for adults with T1D.
Interact J Med Res
January 2025
Department of Nursing Science, Diagnostics in Healthcare and eHealth, Trier University, Trier, Germany.
Background: Psychoeducation positively influences the psychological components of chronic low back pain (CLBP) in conventional treatments. The digitalization of health care has led to the discussion of virtual reality (VR) interventions. However, CLBP treatments in VR have some limitations due to full immersion.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Division of Psychology, School of Health, Care and Social Welfare, Mälardalen University, Västerås/Eskilstuna, Sweden.
Background: Having a great amount of sedentary time is common among older adults and increases with age. There is a strong need for tools to reduce sedentary time and promote adherence to reduced sedentary time, for which eHealth interventions have the potential to be useful. Interventions for reducing sedentary time in older adults have been found to be more effective when elements of self-management are included.
View Article and Find Full Text PDFJ Particip Med
January 2025
Division of Allergy & Pulmonary Medicine, Washington University School of Medicine, St Louis, MO, United States.
Background: Adolescents and young adults (AYA) with cystic fibrosis (CF) are at risk for deviating from their daily treatment regimen due to significant time burden, complicated daily therapies, and life stressors. Developing patient-centric, effective, engaging, and practical behavioral interventions is vital to help sustain therapeutically meaningful self-management.
Objective: This study aimed to devise and refine a patient-centered telecoaching intervention to foster self-management in AYA with CF using a combination of intervention development approaches, including an evidence- and theory-based approach (ie, applying existing theories and research evidence for behavior change) and a target population-centered approach (ie, intervention refinement based on the perspectives and actions of those individuals who will use it).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!