Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976449 | PMC |
http://dx.doi.org/10.1001/jamaneurol.2019.4003 | DOI Listing |
Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.
View Article and Find Full Text PDFNPJ Microgravity
December 2024
University of Colorado Anschutz Medical Campus, Department of Obstetrics & Gynecology, Division of Reproductive Sciences, Aurora, CO, USA.
The effects of galactic cosmic radiation on reproductive physiology remain largely unknown. We determined the impact of near-continuous low-dose-rate Californium-252 neutron irradiation (1 mGy/day) as a space-relevant analog on litter size and number of resorptions at embryonic day (E) 12.5 (n = 19 radiated dams, n = 20 controls) and litter size, number of resorptions, fetal growth, and placental signaling and transcriptome (RNA sequencing) at E18.
View Article and Find Full Text PDFCureus
November 2024
Obstetrics and Gynecology, Employees' State Insurance Corporation (ESIC) Medical College and Hospital, Faridabad, Faridabad, IND.
As space travel evolves from brief missions to longer expeditions, and with the rise of space tourism, there is increasing interest in understanding how space travel affects human reproductive physiology and the feasibility of procreation in space. Space travel presents various potential hazards to reproductive health such as exposure to ionizing radiation, exposure to changes in gravity, psychological stress, and disruptions to the endocrine and urogenital systems, as well as the circadian rhythm. This article explores how cosmic radiation and microgravity impact both female and male gametogenesis, embryogenesis, and reproductive physiology.
View Article and Find Full Text PDFMil Med
December 2024
Clinical and Operational Space Medicine Innovation Consortium (COSMIC), 59th Medical Wing, Lackland Air Force Base, TX 78236, USA.
Introduction: Commercial off-the-shelf (COTS) intravenous fluid (IVF) containers contain residual air, introducing the risk of venous air embolism (VAE). Venous air embolism occurs when air displaces blood flow in vasculature. The danger from residual air is often negligible in terrestrial settings, where gravitational forces generate buoyancy, pushing residual air to the top of the IVF container.
View Article and Find Full Text PDFFront Physiol
November 2024
Radiation Biosciences laboratory, Medical College of Wisconsin, Milwaukee, WI, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!