Down syndrome (DS) is a common intellectual disability, with an incidence of 1 in 700 and is caused by trisomy 21. People with DS develop Alzheimer's disease (AD)-like neuropathology by the age of 40. As metal ion dyshomeostasis (particularly zinc, iron and copper) is one of the characteristics of AD and is believed to be involved in the pathogenesis of disease, we reasoned that it may also be altered in DS. Thus, we used inductively coupled plasma mass spectrometry to examine metal levels in post-mortem brain tissue from DS individuals with concomitant AD pathology. Size exclusion-ICPMS was also utilised to characterise the metalloproteome in these cases. We report here for the first time that iron levels were higher in a number of regions in the DS brain, including the hippocampus (40%), frontal cortex (100%) and temporal cortex (34%), compared to controls. Zinc and copper were also elevated (both 29%) in the DS frontal cortex, but zinc was decreased (23%) in the DS temporal cortex. Other elements were also examined, a number of which also showed disease-specific changes. The metalloproteomic profile in the DS brain was also different to that in the controls. These data suggest that metals and metal:protein interactions are dysregulated in the DS brain which, given the known role of metals in neurodegeneration and AD, is likely to contribute to the pathogenesis of disease. Interrogation of the underlying cellular mechanisms and consequences of this failure in metal ion homeostasis, and the specific contributions of the individual DS and AD phenotypes to these changes, should be explored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9mt00196d | DOI Listing |
Sci Rep
January 2025
Department of Mathematics, College of Natural and Computational Sciences, Wollega University, Nekemte, Ethiopia.
Amino acids, as the fundamental constituents of proteins and enzymes, play a vital role in various biological processes. Amino acids such as histidine, cysteine, and methionine are known to coordinate with metal ions in proteins and enzymes, playing critical roles in their structure and function. In metalloproteins, metal ions are often coordinated by specific amino acid residues, contributing to the protein's stability and catalytic activity.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Biotechnology, German International University, Regional Ring Road, East Cairo, New Administrative Capital, Cairo, Egypt.
In the current study, calcium alginate was used as a carrier for Agaricus bisporus CU13 laccase immobilization, with an immobilization yield of the entrapped laccase of 91.95%. Free and immobilized enzymes showed their best enzyme activity at 60 °C as an optimum temperature.
View Article and Find Full Text PDFSci Rep
January 2025
School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming, China.
It has been reported some nanozymes could be used as a substitute for natural enzyme to detect HO to some extent. However, the low catalytic effect of these materials limited their further application fields. Hence, to increase the catalytic activity of nanozymes was a hot research topic and many methods have been reported.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.
View Article and Find Full Text PDFChem Asian J
January 2025
University of Shanghai for Science and Technology, School of Materials and Chemistry, Shanghai, CHINA.
Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!