Objectives: To evaluate the utility of sequential F-18 fluorodeoxyglucose PET/diffusion-weighted imaging in assessing myocardial perfusion and viability in coronary artery disease.
Methods: Fourteen coronary artery disease patients and five non-coronary artery disease subjects underwent sequential cardiac F-18 fluorodeoxyglucose PET/diffusion-weighted imaging using a trimodality PET/computed tomography-MRI system. The perfusion data were acquired by measuring low b-values apparent diffusion coefficient using diffusion-weighted imaging. Regional myocardial viability was determined by perfusion/metabolism patterns. The perfusion/metabolism patterns obtained by low b-values apparent diffusion coefficient/fluorodeoxyglucose uptake were analyzed and compared with the results from the combination of rest methoxyisobutylisonitrile (Tc-MIBI) myocardial perfusion single-photon emission computed tomography with F-18 fluorodeoxyglucose PET/computed tomography.
Results: Ten coronary artery disease patients and five non-coronary artery disease subjects were included in the final analysis. Low b-values apparent diffusion coefficient defects involved with 25 myocardial regions were demonstrated in nine coronary artery disease patients, while Tc-MIBI defects involved with 21 myocardial regions were shown in the same patients. The agreement between low b-values apparent diffusion coefficient and MIBI uptake was good in coronary artery disease patients (κ = 0.627, P < 0.001) and was better still in the whole subjects (κ = 0.733, P < 0.001). Low b-values apparent diffusion coefficient/fluorodeoxyglucose uptake demonstrated mismatch patterns in six coronary artery disease patients and MIBI/fluorodeoxyglucose uptake revealed mismatch patterns in seven coronary artery disease patients. Agreement in the evaluation of regional myocardial viability between low b-values apparent diffusion coefficient/fluorodeoxyglucose uptake and MIBI/fluorodeoxyglucose uptake was high in coronary artery disease patients (κ = 0.627, P < 0.001) and all subjects (κ = 0.728, P < 0.001).
Conclusions: Low b-values apparent diffusion coefficient/fluorodeoxyglucose uptake is comparable to MIBI/fluorodeoxyglucose uptake in assessing perfusion/metabolism patterns, indicating that microperfusion might dominate the diffusion signal at low b-values and sequential PET/diffusion-weighted imaging might be useful to evaluate myocardial viability in coronary artery disease patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MNM.0000000000001109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!