Background: Clinical and experimental evidence have shown that renal denervation, by removing both the sympathetic and afferent nerves, improves arterial hypertension and renal function in chronic kidney disease (CKD). Given the key role of renal sympathetic innervation in maintaining sodium and water homeostasis, studies have indicated that the total removal of renal nerves leads to impaired compensatory mechanisms during hemodynamic challenges.
Method: In the present study, we hypothesized that afferent (or sensory) fibers from the diseased kidney contribute to sympathetic overactivation to the kidney and other target organ, such as the splanchnic region, contributing to hypertension in CKD. We used a method to remove selectively the afferent renal fibers (periaxonal application of 33 mmol/l capsaicin) in a rat model of CKD, the 5/6 nephrectomy.
Results: Three weeks after afferent renal denervation (ARD), we found a decrease in mean arterial pressure (∼15%) and normalization in renal and splanchnic sympathetic nerve hyperactivity in the CKD group. Interestingly, intrarenal renin--angiotensin system, as well as renal fibrosis and function and proteinuria were improved after ARD in CKD rats.
Conclusion: The findings demonstrate that afferent fibers contribute to the maintenance of arterial hypertension and reduced renal function that are likely to be mediated by increased sympathetic nerve activity to the renal territory as well as to other target organs in CKD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HJH.0000000000002304 | DOI Listing |
Ann Intensive Care
January 2025
Department of Intensive Care Medicine, Universitaire Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
Background: Continuous veno-venous hemodiafiltration (CVVHDF) is used in critically ill patients, but its impact on O₂ and CO₂ removal, as well as the accuracy of resting energy expenditure (REE) measurement using indirect calorimetry (IC) remains unclear. This study aims to evaluate the effects of CVVHDF on O₂ and CO₂ removal and the accuracy of REE measurement using IC in patients undergoing continuous renal replacement therapy.
Design: Prospective, observational, single-center study.
Clin Pharmacokinet
January 2025
Clinical Pharmacology and Toxicology Service, Anesthesiology, Pharmacology and Intensive Care Department, Geneva University Hospitals, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.
Background And Objective: Fexofenadine is commonly used as a probe substrate to assess P-glycoprotein (Pgp) activity. While its use in healthy volunteers is well documented, data in older adult and polymorbid patients are lacking. Age- and disease-related physiological changes are expected to affect the pharmacokinetics of fexofenadine.
View Article and Find Full Text PDFClin Pharmacokinet
January 2025
Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
As people age, the efficiency of various regulatory processes that ensure proper communication between cells and organs tends to decline. This deterioration can lead to difficulties in maintaining homeostasis during physiological stress. This includes but is not limited to cognitive impairments, functional difficulties, and issues related to caregivers which contribute significantly to medication errors and non-adherence.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!