How Surfactants Affect Droplet Wetting on Hydrophobic Microstructures.

J Phys Chem Lett

Department of Mechanical Engineering , University of Alberta, Edmonton , Alberta T6G 1H9 , Canada.

Published: December 2019

Surfactants, as amphiphilic molecules, adsorb easily at interfaces and can detrimentally destroy the useful, gas-trapping wetting state (Cassie-Baxter, CB) of a drop on superhydrophobic surfaces. Here, we provide a quantitative understanding of how surfactants alter the wetting state and contact angle of aqueous drops on hydrophobic microstructures of different roughness () and solid fraction (ϕ). Experimentally, at low surfactant concentrations (), some drops attain a homogeneous wetting state (Wenzel, W), while others attain the CB state whose large contact angles can be predicted by a thermodynamic model. In contrast, all of our high- drops attain the Wenzel state. To explain this observed transition, we consider the free energy and find that, theoretically, for our surfaces the W state is always preferred, while the CB state is metastable at low , consistent with experimental results. Furthermore, we provide a beneficial blueprint for stable CB states for applications exploiting superhydrophobicity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.9b02802DOI Listing

Publication Analysis

Top Keywords

wetting state
12
hydrophobic microstructures
8
drops attain
8
state
7
surfactants affect
4
affect droplet
4
wetting
4
droplet wetting
4
wetting hydrophobic
4
microstructures surfactants
4

Similar Publications

The present study aimed to optimize a mouth-dissolving film (MDF) made from Pongamia pinnata stem bark extract to increase patient compliance and accelerate oral disease therapy. Several stem bark extracts were prepared, and karanjin was used as an herbal marker for the extracts. The ethanolic extract showed the maximum yield (12.

View Article and Find Full Text PDF

Reducing excess electrolytes offers a promising approach to improve the specific energy of electrochemical energy storage devices. However, using lean electrolytes presents a significant challenge for porous electrode materials due to heterogeneous wetting. The spontaneous wetting of nano- or meso-pores within particles, though seldom discussed, adversely affects wetting under lean electrolyte conditions.

View Article and Find Full Text PDF

This work studies the generation of the orbital angular momentum (OAM) beam in the double quantum dot-metal nanoparticle (DQD-MNP) system under the application of the OAM beam. First, an analytical model is derived to attain the relations of probe and generated fields as a distance function in the DQD-MNP system under OAM applied field and spontaneously generated coherence (SGC) components. The calculation here is of material property; it differs from others by calculating energy states of the DQDs and the computation of the transition momenta between quantum dot (QD)-QD and QD-wetting layer (WL) transitions.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Improving the understanding of rainfall-runoff processes: Temporal dynamic of event runoff response in Loess Plateau, China.

J Environ Manage

January 2025

School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China. Electronic address:

Enhancing the understanding of the rainfall-runoff temporal dynamics in semi-arid and semi-humid regions is crucial for flood disaster mitigation. Loess Plateau is a unique environment within semi-arid and semi-humid regions, characterized by its deep loess soil, prevalent short-duration intense rainfall, and changes in underlying surface conditions. In this research, 25 catchments from the Loess Plateau were chosen to examine the temporal variations in event runoff responses across different time scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!