A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multichannel DNA Sensor Array Fingerprints Cell States and Identifies Pharmacological Effectors of Catabolic Processes. | LitMetric

Multichannel DNA Sensor Array Fingerprints Cell States and Identifies Pharmacological Effectors of Catabolic Processes.

ACS Sens

UMR-S 1139, INSERM, 3PHM, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques , Sorbonne Paris Cité, 4 avenue de l'Observatoire , 75006 Paris , France.

Published: December 2019

Cells at disease onset are often associated with subtle changes in the expression level of a single or few molecular components, making traditionally used biomarker-driven clinical diagnosis a challenging task. We demonstrate here the design of a DNA nanosensor array with multichannel output that identifies the normal or pathological state of a cell based on the alteration of its global proteomic signature. Fluorophore-encoded single-stranded DNA (ssDNA) strands were coupled via supramolecular interaction with a surface-functionalized gold nanoparticle quencher to generate this integrated sensor array. In this design, ssDNA sequences exhibit dual roles, where they provide differential affinities with the receptor gold nanoparticle as well as act as transducer elements. The unique interaction mode of the analyte molecules disrupts the noncovalent supramolecular complexation, generating simultaneous multichannel fluorescence output to enable signature-based analyte identification via a linear discriminant analysis-based machine learning algorithm. Different cell types, particularly normal and cancerous cells, were effectively distinguished using their fluorescent fingerprints. Additionally, this DNA sensor array displayed excellent sensitivity to identify cellular alterations associated with chemical modulation of catabolic processes. Importantly, pharmacological effectors, which could modulate autophagic flux, have been effectively distinguished by generating responses from their global protein signatures. Taken together, these studies demonstrate that our multichannel DNA nanosensor is well suited for rapid identification of subtle changes in a complex mixture and thus can be readily expanded for point-of-care clinical diagnosis, high-throughput drug screening, or predicting the therapeutic outcome from a limited sample volume.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.9b01009DOI Listing

Publication Analysis

Top Keywords

sensor array
12
multichannel dna
8
dna sensor
8
pharmacological effectors
8
catabolic processes
8
subtle changes
8
clinical diagnosis
8
dna nanosensor
8
gold nanoparticle
8
effectively distinguished
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!