The sensitive and on-site detection of sulfur dioxide (SO) is in great demand in the fields of food safety and environmental protection. Here, we developed a novel upconversion nanoprobe based on the luminescence energy transfer mechanism for monitoring the atmospheric SO concentrations. The lanthanide emitters, Tm ions, were optimized to be doped on the surface layer of the upconversion nanoparticles to improve their energy transfer efficiency by minimizing the distance between the emitters and the surface quencher, a cyanine dye. As a proof-of-concept, the optimal nanoprobe was utilized to detect SO water derivatives, bisulfite ions, exhibiting a linear luminescence increase in the range of 1 nM to 10 nM. Furthermore, we assembled the cyanine-modified upconversion nanoparticles onto a test paper, and used a smartphone-based detection platform to achieve portable and visual detection of SO. The test paper showed a strong luminescence stability, homogeneity and good anti-interference. The limit of detection for SO gas was found to be 1 ng L. This novel upconversion test paper was also demonstrated to directly monitor the concentration of SO gas in atmosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9an01725a | DOI Listing |
Appl Radiat Isot
January 2025
Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia.
Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.
View Article and Find Full Text PDFPLoS One
January 2025
School of Electronic Science Engineering, Vellore Institute of Technology, Vellore, India.
Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Uzbek State University of Physical Education and Sport, Republic of Uzbekistan.
The aim of the research was to develop the design of a striking dummy and the theoretical foundations of martial arts strikes and to test its effectiveness in a pedagogical experiment. This paper presents the design of a striking dummy and the foundational theories behind martial arts strikes. We used modern microelectronics, including a diverse range of sensors, for executing a multitude of electromechanical measurements.
View Article and Find Full Text PDFDrug Saf
January 2025
Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark.
Introduction: Large administrative healthcare databases can be used for near real-time sequential safety surveillance of drugs as an alternative approach to traditional reporting-based pharmacovigilance. The study aims to build and empirically test a prospective drug safety monitoring setup and perform a sequential safety monitoring of rofecoxib use and risk of cardiovascular outcomes.
Methods: We used Danish population-based health registers and performed sequential analysis of rofecoxib use and cardiovascular outcomes using case-time-control and cohort study designs from January 2000 to September 2004.
Nanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!