This study presents an analysis of three models associated with artificial intelligence as tools to forecast the generation of urban solid waste in the city of Bogotá, in order to learn about this type of waste's behavior. The analysis was carried out in such a manner that different efficient alternatives are presented. In this paper, a possible decision-making strategy was explored and implemented to plan and design technologies for the stages of collection, transport and final disposal of waste in cities, while taking into account their particular characteristics. The first model used to analyze data was the decision tree which employed machine learning as a non-parametric algorithm that models data separation limitations based on the learning decision rules on the input characteristics of the model. Support vector machines were the second method implemented as a forecasting model. The primary advantage of support vector machines is their proper adjustment to data despite its variable nature or when faced with problems with a small amount of training data. Lastly, recurrent neural network models to forecast data were implemented, which yielded positive results. Their architectural design is useful in exploring temporal correlations among the same. Distribution by collection zone in the city, socio-economic stratification, population, and quantity of solid waste generated in a determined period of time were factors considered in the analysis of this forecast. The results found that support vector machines are the most appropriate model for this type of analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6861577PMC
http://dx.doi.org/10.1016/j.heliyon.2019.e02810DOI Listing

Publication Analysis

Top Keywords

support vector
16
vector machines
16
city bogotá
8
machine learning
8
solid waste
8
characteristics model
8
data
5
predictive analysis
4
analysis urban
4
waste
4

Similar Publications

The feasibility of using machine learning to predict COVID-19 cases.

Int J Med Inform

January 2025

School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:

Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Breast cancer is one of the most aggressive types of cancer, and its early diagnosis is crucial for reducing mortality rates and ensuring timely treatment. Computer-aided diagnosis systems provide automated mammography image processing, interpretation, and grading. However, since the currently existing methods suffer from such issues as overfitting, lack of adaptability, and dependence on massive annotated datasets, the present work introduces a hybrid approach to enhance breast cancer classification accuracy.

View Article and Find Full Text PDF

The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.

View Article and Find Full Text PDF

Objective: We aimed to develop a highly interpretable and effective, machine-learning based risk prediction algorithm to predict in-hospital mortality, intubation and adverse cardiovascular events in patients hospitalised with COVID-19 in Australia (AUS-COVID Score).

Materials And Methods: This prospective study across 21 hospitals included 1714 consecutive patients aged ≥ 18 in their index hospitalization with COVID-19. The dataset was separated into training (80%) and test sets (20%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!