Stochastic tissue window normalization of deep learning on computed tomography.

J Med Imaging (Bellingham)

Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, United States.

Published: October 2019

Tissue window filtering has been widely used in deep learning for computed tomography (CT) image analyses to improve training performance (e.g., soft tissue windows for abdominal CT). However, the effectiveness of tissue window normalization is questionable since the generalizability of the trained model might be further harmed, especially when such models are applied to new cohorts with different CT reconstruction kernels, contrast mechanisms, dynamic variations in the acquisition, and physiological changes. We evaluate the effectiveness of both with and without using soft tissue window normalization on multisite CT cohorts. Moreover, we propose a stochastic tissue window normalization (SWN) method to improve the generalizability of tissue window normalization. Different from the random sampling, the SWN method centers the randomization around the soft tissue window to maintain the specificity for abdominal organs. To evaluate the performance of different strategies, 80 training and 453 validation and testing scans from six datasets are employed to perform multiorgan segmentation using standard 2D U-Net. The six datasets cover the scenarios, where the training and testing scans are from (1) same scanner and same population, (2) same CT contrast but different pathology, and (3) different CT contrast and pathology. The traditional soft tissue window and nonwindowed approaches achieved better performance on (1). The proposed SWN achieved general superior performance on (2) and (3) with statistical analyses, which offers better generalizability for a trained model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863984PMC
http://dx.doi.org/10.1117/1.JMI.6.4.044005DOI Listing

Publication Analysis

Top Keywords

tissue window
32
window normalization
20
soft tissue
16
stochastic tissue
8
window
8
deep learning
8
learning computed
8
computed tomography
8
tissue
8
generalizability trained
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!