Low-frequency vibrational spectroscopy offers a compelling solution for the nondestructive and noninvasive study of pigments in historical artifacts by revealing the characteristic sub-200 cm spectral features of component materials. The techniques of terahertz time-domain spectroscopy (THz-TDS) and low-frequency Raman spectroscopy (LFRS) are complementary approaches to accessing this spectral region and are valuable tools for artifact identification, conservation, and restoration. In this investigation of historical pigments, pure and mixed samples of minium (PbO) and vermilion (HgS) were studied using a combination of THz-TDS and LFRS experiments to determine the limits of detection (LOD) and quantitation (LOQ) for each compound with both methods. The measurements were also supported using solid-state density functional theory simulations of the pigment structures and vibrations, enabling spectral peaks to be assigned to specific atomic motions in these solids. The THz-TDS LOD was found to be similar for both minium and vermilion at 6% by mass on average. In comparison, LFRS was found to be more sensitive to both pigments, particularly to the presence of vermilion with an LFRS LOD of 0.2%. These results demonstrate that low-frequency vibrational spectroscopy can be used for successful quantitative analysis of pigment mixtures and provide reliable new data for use in heritage science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b04348 | DOI Listing |
Nano Lett
December 2024
Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China.
Increasing noise pollution has generated a tremendous threat to human health and incurred great economic losses. However, most existing noise-absorbing materials present a significant challenge in achieving lightweight, robust mechanical stability, and efficient low-frequency (<1000 Hz) noise reduction. Herein, we create highly compressible micro/nanofibrous sponges with thin-walled cavity structures for efficient noise reduction through electrospinning and dispersion casting.
View Article and Find Full Text PDFChemphyschem
December 2024
University of Ioannina, Chemistry, 45110, Ioannina, GREECE.
The solvation structure and dynamics of the thiocyanate anion at infinite dilution in mixed N, N-Dimethylformamide (DMF)-water liquid solvents was studied using classical molecular dynamics simulation techniques. The results obtained have indicated a preferential solvation of the thiocyanate anions by the water molecules, due to strong hydrogen bonding interactions between the anion and water molecules. A first hydration shell at short intermolecular distances is formed around the SCN- anion consisting mainly by water molecules, followed by a second shell consisting by both DMF and water molecules.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
In pursuit of high- hydride superconductors, the molecular hydrides have attracted less attention because the hydrogen quasimolecules are usually inactive for superconductivity. Here, we report on the successful synthesis of a novel bismuth hydride superconductor 2/-BiH at pressures around 170-180 GPa. Its structure comprises bismuth atoms and elongated hydrogen molecules with a H-H bond length of 0.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Material and Chemistry, Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710049, China.
Direct recycling technology can effectively solve the environmental pollution and resource waste problems caused by spent lithium-ion batteries. However, the repaired LiNiCoMnO (NCM) black mass by direct recycling technology shows an unsatisfactory cycle life, which is attributed to the formation of spinel/rock salt phases and rotational stacking faults caused by the in-plane and out-of-plane migration of transition metal (TM) atoms during charge/discharge. Herein, local lattice stress is introduced into the regenerated cathode during repair.
View Article and Find Full Text PDFUltrasonics
December 2024
Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada; Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada. Electronic address:
Clinical ultrasound contrast agent microbubbles remain intravascular and are between 1-8 µm in diameter, with a volume-weighted mean size of 2-3 µm. Despite their worldwide clinical utility as a diagnostic contrast agent, and their continued and ongoing success as a local therapeutic vector, the fundamental interplay between microbubbles - including bubble-bubble interaction and the effects of a neighboring viscoelastic vessel wall, remain poorly understood. In this work, we developed a finite element model to study the physics of the complex system of two different-sized bubbles (2 and 3 µm in diameter) confined within a viscoelastic vessel from a resonance response perspective (3-12 MHz).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!