Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: Skeletal fragility is a significant complication of type 1 diabetes (T1D), with an increased risk of fracture observed starting in childhood. Altered bone accrual and microarchitectural development during the critical peripubertal years may contribute to this fragility.
Objective: To evaluate differences in skeletal microarchitecture between girls with T1D and controls and to assess factors associated with these differences.
Design: Cross-sectional comparison.
Participants: Girls ages 10-16 years, 62 with T1D and 61 controls.
Results: Areal bone mineral density (BMD) measured by dual-energy x-ray absorptiometry did not differ between girls with and without T1D. At the distal tibia, trabecular BMD was 7.3 ± 2.9% lower in T1D (P = 0.013), with fewer plate-like and axially-aligned trabeculae. Cortical porosity was 21.5 ± 10.5% higher, while the estimated failure load was 4.7 ± 2.2% lower in T1D (P = 0.043 and P = 0.037, respectively). At the distal radius, BMD and microarchitecture showed similar differences between the groups but did not reach statistical significance. After stratifying by HbA1c, only those girls with T1D and HbA1c > 8.5% differed significantly from controls. P1NP, a marker of bone formation, was lower in T1D while CTX and TRAcP5b, markers of bone resorption and osteoclast number, respectively, did not differ. The insulin-like growth factor 1 (IGF-1) Z-score was lower in T1D, and after adjustment for the IGF-1 Z-score, associations between T1D status and trabecular microarchitecture were largely attenuated.
Conclusions: Skeletal microarchitecture is altered in T1D early in the course of disease and among those with higher average glycemia. Suppressed bone formation and lower circulating IGF-1 likely contribute to this phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064304 | PMC |
http://dx.doi.org/10.1210/clinem/dgz221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!