A population at low census might go extinct or instead transition into exponential growth to become firmly established. Whether this pivotal event occurs for a within-host pathogen can be the difference between health and illness. Here, we define the principles governing whether HIV-1 spread among cells fails or becomes established by coupling stochastic modeling with laboratory experiments. Following ex vivo activation of latently infected CD4 T cells without de novo infection, stochastic cell division and death contributes to high variability in the magnitude of initial virus release. Transition to exponential HIV-1 spread often fails due to release of an insufficient amount of replication-competent virus. Establishment of exponential growth occurs when virus produced from multiple infected cells exceeds a critical population size. We quantitatively define the crucial transition to exponential viral spread. Thwarting this process would prevent HIV transmission or rebound from the latent reservoir.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948011PMC
http://dx.doi.org/10.1016/j.chom.2019.10.006DOI Listing

Publication Analysis

Top Keywords

transition exponential
12
principles governing
8
exponential growth
8
hiv-1 spread
8
governing establishment
4
establishment versus
4
versus collapse
4
collapse hiv-1
4
hiv-1 cellular
4
spread
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!