Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium.

J Hazard Mater

State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for materials, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:

Published: March 2020

Eliminating the radioactive Cs from nuclear waste is critical to the human health and environment. Prussian blue (PB)-based materials are considered as promising adsorbents for the removal of cesium. Herein, we demonstrate a facile strategy to achieve controllable synthesis of PB nanocrystals decorated on nitrogen-doped hierarchically porous carbon (NHPC) derived from cattle bone as adsorbent to remove cesium. The PB nanocrystals with a nanocube morphology are well distributed on NHPC, which is beneficial to increase the reachable surface area during adsorption. The resulting adsorbent exhibits a remarkable adsorption performance with a capacity of 125.31 mg g, a superior recyclability with 87 % of initial capacity retained after 5 cycles, and an outstanding adsorption selectivity for cesium. X-ray diffraction, X-ray photoelectron spectroscopy combined with Fe Mössbauer spectroscopy results reveal that cesium ions are inserted into the crystal channels of PB to generate a new phase (CsFe(CN)·3HO) after adsorption. Moreover, the adsorption process is spontaneous and endothermic which can be described by the Langmuir isotherm and pseudo-second-order kinetic models. This strategy for synthesis of PB/carbon adsorbents offers efficient candidate for removal of Cs from wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.121568DOI Listing

Publication Analysis

Top Keywords

prussian blue
8
decorated nitrogen-doped
8
nitrogen-doped hierarchically
8
hierarchically porous
8
porous carbon
8
cesium
5
adsorption
5
blue nanocubes
4
nanocubes decorated
4
carbon network
4

Similar Publications

Wearable sensors have broad application potential in motion assessment, health monitoring, and medical diagnosis. However, relying on a specialized instrument for power supply and signal reading makes sensors unsuitable for on-site detection. To solve this problem, a reusable self-powered electrochromic sensor patch based on enzymatic biofuel cells were constructed to realize the on-site visualized monitoring.

View Article and Find Full Text PDF

Lycopene (LYC) is an extremely powerful antioxidant with the potential to treat a range of diseases and to inhibit ferroptosis. This research aims to elucidate how LYC impacts polycystic ovarian syndrome (PCOS) and the action mechanisms. A PCOS rat model was constructed by injecting DHEA.

View Article and Find Full Text PDF

Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration.

Mater Today Bio

February 2025

China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.

Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).

View Article and Find Full Text PDF

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury.

ACS Nano

January 2025

School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.

Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!