Evaluation of filamentous heterocystous cyanobacteria for integrated pig-farm biogas slurry treatment and bioenergy production.

Bioresour Technol

Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Published: February 2020

The study evaluates 36 filamentous heterocystous cyanobacteria for the treatment of biogas slurry from pig farm and the accumulation of biomass for bioenergy production. The results showed that only the strains B, J, and L were able to adapt to a 10% biogas slurry. The removal rates of ammonia nitrogen, total nitrogen, and total phosphorus for strains J and L were 92.46%-97.97%, 73.79%-79.90%, and 97.14%-98.46%, respectively, higher than that of strain B. Strain J had the highest biomass productivity and lipid productivity. Based on the biodiesel prediction results, it was concluded that strains J and L are more suitable for biodiesel production. The estimation of theoretical methane potential suggests that the algal biomass of strain J also have the desirable possibility of biogas generation. In summary, algal strain J (Nostoc sp.) offers great potential for biogas slurry treatment and for the production of bioenergy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.122418DOI Listing

Publication Analysis

Top Keywords

biogas slurry
16
filamentous heterocystous
8
heterocystous cyanobacteria
8
slurry treatment
8
bioenergy production
8
nitrogen total
8
biogas
5
evaluation filamentous
4
cyanobacteria integrated
4
integrated pig-farm
4

Similar Publications

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

In the greenhouse of the Chinese Academy of Sciences located on Huaizhong Road in Shijiazhuang City, Hebei Province, five fertilization treatment levels were established. These consisted of no fertilization (CK), conventional chemical fertilizer (with 100% chemical fertilizer application), and biogas slurry substitution treatments for chemical fertilizers (replacing 30%, 60%, and 100% of the chemical fertilizer nitrogen with biogas slurry nitrogen). Soil nutrient determination methods and high-throughput sequencing were employed to elucidate the correlative relationship between soil nutrients and microbial community metabolism.

View Article and Find Full Text PDF

Long-term effect of repeated application of pig slurry digestate on microbial communities in arable soils.

Heliyon

January 2025

Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.

Anaerobic digestion represents an opportunity for converting organic waste (OW) into valuable products: renewable energy (biogas) and a fertilizer (digestate). However, the long-term effects of digestates on soil biota, especially microorganisms, need to be better documented to understand the impact of digestate on soil ecosystem functioning and resilience. This study assessed the cumulative effect of repeated pig slurry digestate applications on soil microbial communities over a decade, using an in-situ approach to compare digested feedstock with undigested feedstock and other fertilization treatments.

View Article and Find Full Text PDF

Co-application of hydrothermal carbonization aqueous phase and biogas slurry reduced ammonia volatilization in paddy.

J Environ Manage

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.

Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.

View Article and Find Full Text PDF

Biochemical methane potential tests using water hyacinth (WH), pretreated water hyacinth (PWH), and Hydrilla verticillata (HV) as substrates using sewage media were explored. This study replaced the freshwater required to prepare the slurry for AD of organic solid waste with domestic sewage. Cow dung was used as the inoculum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!