Fast growing woody plants are proposed for potential application for phytoremediation of contaminated soil. In this study, the plant growth, physiological responses, mineral element uptake, and phytoremediation potential of the woody plant Morus alba L. were studied in different levels of Cd-contaminated soil through dynamic sampling (30, 60, 120, and 180 d). The results indicated that M. alba L. had strong physiological coordination, tolerance and detoxification capacity in response to Cd in contaminated soil. Compared with the control, the photosynthetic pigment content in M. alba L. leaves was significantly suppressed during initial cultivation (30-60 d) and the malonaldehyde (MDA) content and electrolyte leakage (EL) were increased from 30 to 120 d of cultivation. Furthermore, the uptake of Cu, Mn, and Zn in plant tissues was imbalanced throughout cultivation (30-180 d) under 55 mg·kg Cd stress. However, the chlorophyll a, chlorophyll b, carotenoid, soluble protein, and soluble sugar contents and the peroxidase (POD) and ascorbate peroxidase (APX) activities in plant leaves, as well as the uptake of macronutrients (K, Ca, and Mg) in plant stems and leaves were maintained at normal levels. Furthermore, the catalase (CAT) activities in plant leaves and the Ca and Mg contents in plant roots were significantly (p < 0.05) enhanced in response to Cd stress after 180 d of cultivation. Furthermore, the biomass of M. alba L. was significantly increased with cultivation time in Cd-contaminated soil. Therefore, normal photosynthesis, antioxidant protection, and macronutrient regulation contribute to M. alba L. with high tolerance to Cd. Moreover, the uptake and total extraction amount of Cd in aboveground M. alba L. were significantly (p < 0.05) increased with both the plant growth period and soil Cd level, and the maximum amount of Cd reached up to 340.5 μg·plant. Thus, M. alba L. can be regarded as a potential candidate for phytoremediation in Cd-contaminated sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2019.109973 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!