A novel MIL-101(Cr) (MIL, Matérial Institut Lavoisier) supported propyl carboxylic acid, denoted here as MIL-101(Cr)-NH-CO-Pr-COOH, has been fabricated by post-synthetic modifications of nitro-functionalized MIL-101(Cr), MIL-101(Cr)-NO. The resulting MOF was successfully characterized by using FT-IR, XRD, N adsorption-desorption, H NMR, SEM, ICP-OES, elemental analysis and TGA. Then, the prepared solid was used as an extremely highly effective multifunctional catalyst for the one-pot three-component synthesis of quinazolin-4(1H)-one derivatives as biologically active nitrogen heterocyclic compounds under solvent-free conditions. The important features of this methodology are good to excellent yields of products, the use of very small amounts of catalyst, short reaction time, non-requirement of organic solvents, and environmental benign and mild reaction conditions. Furthermore, turnover frequency was found to be in the range 3.5-50 h under neat conditions, which is comparable to the reported previously for this reaction. Significantly, compared with the pristine MOF and the related homogenous catalysts, the MIL-10 1(Cr)-NHCO-Pr-COOH exhibited superior catalytic activity which can be attributed to the synergistic effect between isolated Lewis acidic Cr(III) nodes and Brønsted acidic free COOH groups in addition to the cooperative interplay of the Brønsted acid and the amine sites within the framework. More remarkably, MOF was stable and reusable up to three times without any changes in its activity and structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2019.11.056DOI Listing

Publication Analysis

Top Keywords

brønsted-lewis dual
4
dual acid
4
acid sites
4
sites chromium-based
4
chromium-based metal-organic
4
metal-organic framework
4
framework cooperative
4
cooperative catalysis
4
catalysis highly
4
highly efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!