Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection.

Mater Sci Eng C Mater Biol Appl

Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea. Electronic address:

Published: February 2020

A novel electrospinning approach is proposed for the fabrication of copper (Cu)-nanoflower decorated gold nanoparticles (AuNPs)-graphene oxide (GO) nanofiber (NF) as an electrochemical biosensor for the glucose detection. In this study, GO was mixed with poly(vinyl alcohol) (PVA) and used as a fiber precursor, which greatly improves the electrochemical properties. The above solution was uniformly coated onto the surfaces of gold chip to form GO NFs via electrospinning. AuNPs were coated onto the surface of GO NFs and then incorporated organic-inorganic hybrid nanoflower [Cu nanoflower-glucose oxidase (GOx) and horseradish peroxidase (HRP)]. The electrochemical experiments revealed that Cu-nanoflower@AuNPs-GO NFs exhibited outstanding electrochemical catalytic nature, and selectivity for the conversion of glucose to gluconic acid in the presence of GOx-HRP-Cu nanoflower. The Cu-nanoflower@AuNPs-GO NFs coated Au chip exhibited good linear range 0.001-0.1 mM, with a detection limit of 0.018 μM. The Cu-nanoflower@AuNPs-GO NFs modified Au chip exhibited higher catalytic properties, which are attributed to the coating of unique organic-inorganic nanostructured materials on the surfaces of Au chip. These results indicate that the nano-bio hybrid materials can be applied as a promising electrochemical biosensor to monitor glucose levels in biofluids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.110273DOI Listing

Publication Analysis

Top Keywords

electrochemical biosensor
12
cu-nanoflower@aunps-go nfs
12
cu-nanoflower decorated
8
decorated gold
8
oxide nanofiber
8
nanofiber electrochemical
8
biosensor glucose
8
glucose detection
8
chip exhibited
8
electrochemical
6

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

Instituto de Salud Carlos III, Madrid, Madrid, Spain.

Background: Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and the leading cause of dementia in the elderly. New approaches to study AD are still needed to identify and validate blood-based diagnostic biomarkers that could be useful for its early diagnosis. Circulating autoantibodies (AAbs) and their target proteins (autoantigens) are promising candidate biomarkers to aid in AD early diagnosis.

View Article and Find Full Text PDF

Despite the various benefits of chlorpromazine, its misuse and overdose may lead to severe side effects, therefore, creating a user-friendly point-of-care device for monitoring the levels of chlorpromazine drug to manage the potential side effects and ensure the effective and safe use of the medication is highly desired. In this report, we have demonstrated a simple and scalable manufacturing process for the development of a 3D-printed conducting microneedle array-based electrochemical point-of-care device for the minimally invasive sensing of chlorpromazine. We used an inkjet printer to print the carbon and silver ink onto a customized 3D-printed ultrasharp microneedle array for the preparation of counter, working, and reference electrodes.

View Article and Find Full Text PDF

Using a laser-scribed (direct printing) technique, we have fabricated an enzymeless, mediatorless, and paper-interfaced electrochemical device (P-LSG) for uric acid detection on a flexible polyimide sheet. Various paper substrates were investigated, and it was found that Whatman filter paper-1 is promising to obtain the best electrochemical signals at the small volume of electrolyte, i.e.

View Article and Find Full Text PDF

Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin.

Anal Chem

January 2025

Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.

View Article and Find Full Text PDF

A novel and sensitive trefoil-structured biosensor based on nanoporous gold for simultaneous determination of microRNA-21 and microRNA-16.

Biosens Bioelectron

December 2024

State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China. Electronic address:

Although electrochemical biosensors have been developed to detect multiple microRNAs (miRNAs) simultaneously through loading different capture probes, high surface-induced perturbation and competition among probes have reduced the detection sensitivity. To address these challenges, a trefoil DNA capture probe (TDCP) was designed for microRNA-21 (miR-21) and microRNA-16 (miR-16) detection simultaneously. The TDCP exhibits a stable structure, low spatial resistance, and integral rigidity, which decreases high surface-induced perturbations and competition to improve the accessibility of the target miRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!