Impact of temperature on the physicochemical, structural and biological features of copper-silica nanocomposites.

Mater Sci Eng C Mater Biol Appl

Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland; A. Chełkowski Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland.

Published: February 2020

Classical wet chemical synthesis was used to fabricate a hybrid composite that contained copper nanoparticles (average size ∼1 nm), which were embedded into a silicon oxide carrier. The structural and chemical alternations in the copper-functionalized silica were investigated in systems that were sintered at 573 K, 873 K, 1173 K, and 1473 K. A general trend, which was associated with the transformation of metallic copper with a cubic structure into copper(II) oxide with a monoclinic structure in the heat-treated systems, was found. XPS and FTIR spectroscopies also revealed the presence of copper(I) oxide, which formed a shell around the CuO. SEM and TEM showed gradual densification of the hybrid system at ever higher sintering temperatures, which corresponded with the gradual copper agglomeration. A temperature of 873 K was determined to be the temperature at which amorphous silica was transformed into cristoballite and tridymite, as well as the formation of a bulk-like copper structure. In relation to the physicochemical and structural data, high antimicrobial features that had a relatively low toxicity effect on the normal human fibroblasts (NHDF) below 250 mg/L was found for the initial copper-silica composite and the samples that were sintered at 573 K. In turn, a significant decrease in the biological impact was observed in the samples that were sintered at temperatures above 573 K. As a result, the paper discusses the model of structural modifications in copper-silica nanocomposite concerning their biological impact that was developed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.110274DOI Listing

Publication Analysis

Top Keywords

physicochemical structural
8
sintered 573 k
8
samples sintered
8
biological impact
8
impact temperature
4
temperature physicochemical
4
structural
4
structural biological
4
biological features
4
features copper-silica
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!